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AbstractÐRecent work has shown that invalidation report (IR)-based cache management is an attractive approach for mobile

environments. However, the IR-based cache invalidation solution has some limitations, such as long query delay, low bandwidth

utilization, and it is not suitable for applications where data change frequently. In this paper, we propose a proactive cache

management scheme to address these issues. Instead of passively waiting, the clients intelligently prefetch the data that are most

likely used in the future. Based on a novel prefetch-access ratio concept, the proposed scheme can dynamically optimize performance

or power based on the available resources and the performance requirements. To deal with frequently updated data, different

techniques (indexing and caching) are applied to handle different components of the data based on their update frequency. Detailed

simulation experiments are carried out to evaluate the proposed methodology. Compared to previous schemes, our solution not only

improves the cache hit ratio, the throughput, and the bandwidth utilization, but also reduces the query delay and the power

consumption.

Index TermsÐInvalidation report, power conservation, query latency, caching, mobile computing.
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1 INTRODUCTION

WITH the advent of third generation wireless infra-
structure and the rapid growth of wireless commu-

nication technology such as Bluetooth and IEEE 802.11,
mobile computing becomes possible: People with battery
powered mobile devices can access various kinds of
services at any time any place. However, existing wireless
services are limited by the constraints of mobile environ-
ments such as narrow bandwidth, frequent disconnections,
and limitations of the battery technology. Thus, mechan-
isms to efficiently transmit information from the server to a
massive number of clients (running on mobile devices) have
received considerable attention [3], [13], [23], [25].

Broadcasting has been shown to be an effective data

dissemination technique for wireless networks in many

studies [3], [13]. With this technique, users access data by

simply monitoring the channel until the required data

appear on the broadcast channel. To efficiently deliver data

on the broadcast channels, content organization and data

broadcast scheduling should be based on client access

patterns. For example, techniques such as broadcast disks

[2] were provided to improve system performance by

broadcasting hot data items frequently. To reduce client

power consumption, techniques such as indexing [13] were

proposed to reduce the client tune-in time. The general idea

is to interleave index (directory) information with data on

the broadcast channels such that the clients, by first

retrieving the index information, are able to obtain the

arrival time of the desired data items. As a result, a client

can enter doze mode most of the time and only wakes up
just before the desired data arrive.

Although broadcasting has good scalability and low
bandwidth requirement, it has some drawbacks. For
example, since a data item may contain a large volume of
data (especially in the multimedia era), the data broadcast
cycle may be long. Hence, the clients have to wait for a long
time before getting the required data. Caching frequently
accessed data items at the client side is an effective
technique to improve performance in mobile computing
systems. With caching, the data access latency is reduced
since some data access requests can be satisfied from the
local cache, thereby obviating the need for data transmis-
sion over the scarce wireless links. When caching is used,
cache consistency must be addressed. Although caching
techniques used in file systems such as Coda [20], Ficus [19]
can be applied to mobile environments, these file systems
are primarily designed for a point-to-point communication
environment and they may not be applicable to the
broadcasting environment.

Recently, many works [3], [6], [7], [5], [15], [25], [23] have
shown that invalidation report (IR)-based cache management
is an attractive approach for mobile environments. In this
approach, the server periodically broadcasts an invalidation
report in which the changed data items are indicated.
Rather than querying the server directly regarding the
validation of cached copies, the clients can listen to these
IRs over the wireless channel and use them to validate their
local cache. The IR-based solution is attractive because it
can scale to any number of clients who listen to the IR.
However, the IR-based solution has some drawbacks. First,
there is a long query latency associated with this scheme
since a client must listen to the next IR and use the report to
conclude whether its cache is valid or not before answering
a query. Hence, the average latency of answering a query is
the sum of the actual query processing time and half of the
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IR interval. If the IR interval is long, the delay may not be
able to satisfy the requirements of many clients. Second,
even though many clients cache the same updated data
item, all of them have to query the server and get the data
from the server separately. Although the approach works
fine for some cold data items, which are not cached by many
clients, it is not effective for hot data items. For example,
suppose a data item is frequently accessed (cached) by
100 clients, updating the data item once may generate
100 uplink (from the client to the server) requests and
100 downlink (from the server to the client) broadcasts.
Obviously, it wastes a large amount of wireless bandwidth
and battery energy.

In our previous work [4], we addressed the first problem
with a UIR-based approach. In this approach, a small
fraction of the essential information (called updated
invalidation report (UIR)) related to cache invalidation is
replicated several times within an IR interval and, hence,
the client can answer a query without waiting until the next
IR. However, if there is a cache miss, the client still needs to
wait for the data to be delivered. Thus, both issues (query
delay and bandwidth utilization) are related to the cache hit
ratio. In this paper, we propose a proactive cache manage-
ment scheme to improve the cache hit ratio and, hence,
reduce the query delay and improve the bandwidth
utilization. Instead of passively waiting, clients intelligently
prefetch the data that are most likely used in the future.
Based on a novel prefetch-access ratio concept, the proposed
scheme can dynamically optimize performance or power
based on the available resources and the performance
requirements. Although caching data at the client site can
improve performance and conserve battery energy, caching
may not be the best option if the broadcast data are
frequently updated, in which case, we propose applying
different techniques (broadcasting and caching) [8] to deal
with different components of the data items based on their
update frequency. Extensive experiments are provided and
used to evaluate the proposed methodology. Compared to
previous schemes, our solution improves the cache hit ratio,
the throughput, and the bandwidth utilization with low
power.

The rest of the paper is organized as follows: Section 2
develops the necessary background. In Section 3, we
propose techniques which can improve the cache hit ratio
and the bandwidth utilization with low power. Section 4
evaluates the performance of the proposed solutions. The
next two sections give future research directions and
summarize the paper.

2 PRELIMINARIES

When cache techniques are used, data consistency issues
must be addressed to ensure that clients see only valid
states of the data or at least do not unknowingly access data
that are stale according to the rules of the consistency
model. Problems related to cache consistency have been
widely studied in many other systems such as multi-
processor architectures [10], distributed file systems [17],
[20], distributed shared memory [18], and client-server
database systems. The notion of data consistency is, of
course, application dependent. In database systems, data

consistency is traditionally tied to the notion of transaction
serializability. In practice, however, few applications
demand or even want full serializability and more efforts
have gone into defining weaker forms of correctness [16]. In
this paper, we use the latest value consistency model1 [1], [4],
[23], which is widely used in dissemination-based informa-
tion systems. In the latest value consistency model, clients
must always access the most recent value of a data item.
This level of consistency is what would arise naturally if the
clients do not perform caching and the server broadcasts
only the most recent values of items. When client caching is
allowed, techniques should be applied to maintain the latest
value consistency.

2.1 The IR-Based Cache Invalidation Model

To ensure cache consistency, the server broadcasts invalida-
tion reports (IRs) every L seconds. The IR consists of the
current timestamp Ti and a list of tuples �dx; tx� such that
tx > �Ti ÿ w � L�, where dx is the data item id, tx is the most
recent update timestamp of dx, and w is the invalidation
broadcast window size. In other words, IR contains the
update history of the past w broadcast intervals. Every
client, if active, listens to the IRs and invalidates its cache
accordingly. To answer a query, the client listens to the next
IR and uses it to decide whether its cache is valid or not. If
there is a valid cached copy of the requested data item, the
client returns the item immediately. Otherwise, it sends a
query request to the server through the uplink.

In order to save energy, the client (mobile device) may
power off most of the time and only turn on during the
IR broadcast time. Moreover, a client may be in the doze
mode for a long time and it may miss some IRs. Since the IR
includes the history of the past w broadcast intervals, the
client can still validate its cache as long as the disconnection
time is shorter than w � L. However, if the client disconnects
longer than w � L, it has to discard the entire cached data
items since it has no way to tell which parts of the cache are
valid. Since the client may need to access some data items in
its cache, discarding the entire cache may consume a large
amount of wireless bandwidth in future queries. Many
solutions [12], [15], [24] are proposed to address the long
disconnection problem and Hu and Lee [12] have a good
survey of these schemes.

2.2 The UIR-Based Cache Invalidation

In order to reduce the query latency, Cao [4] proposed
replicating the IRs m times, that is, the IR is repeated every
� 1
m�th of the IR interval. As a result, a client only needs to

wait at most � 1
m�th of the IR interval before answering a

query. Hence, latency can be reduced to � 1
m�th of the latency

in the previous schemes (when query processing time is not
considered).

Since the IR contains a large amount of update history
information, replicating the complete IR m times may
consume a large amount of broadcast bandwidth. In order
to save the broadcast bandwidth, after one IR, mÿ 1 updated
invalidation reports (UIRs) are inserted within an IR interval.
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Each UIR only contains the data items that have been
updated after the last IR was broadcast. In this way, the size
of the UIR becomes much smaller compared to that of the
IR. As long as the client downloads the most recent IR, it
can use the UIR to verify its own cache. The idea of the
proposed technique can be further explained by Fig. 1. In
Fig. 1, Ti;k represents the time of the kth UIR after the ith IR.
When a client receives a query between Tiÿ1;1 and Tiÿ1;2, it
cannot answer the query until Ti in the IR-based approach,
but it can answer the query at Tiÿ1;2 in the UIR-based
approach. Hence, the UIR-based approach can reduce the
query latency in case of a cache hit. However, if there is a
cache miss, the client still needs to fetch data from the
server, which increases the query latency. Next, we propose
a cache management algorithm to improve the cache hit
ratio and the bandwidth utilization.

3 A PROACTIVE POWER-AWARE CACHE

MANAGEMENT ALGORITHM

In this section, we present techniques which can improve
the cache hit ratio, reduce the power consumption, and
efficiently deal with frequently updated data.

3.1 Improve the Cache Hit Ratio by Prefetching

In most previous IR-based algorithms, updating a hot data
item may result in many cache misses. We address the
problem by asking the clients to prefetch data that may be
used in the near future. For example, if a client observes that
the server is broadcasting a data item which is an invalid
entry2 of its local cache, it is better to download the data;
otherwise, the client may have to send another request to
the server and the server will have to broadcast the data
again in the future. To save power, clients may only wake
up during the IR broadcasting period and then how to
prefetch data becomes an issue. As a solution, after
broadcasting the IR, the server first broadcasts the id list
of the data items whose data values will be broadcast next
and then broadcasts the data values of the data items in the
id list. Each client should listen to the IR if it is not
disconnected. At the end of the IR, a client downloads the id
list and finds out when the interested data will come and
wakes up at that time to download the data. With this
approach, power can be saved since clients stay in the doze

mode most of the time; bandwidth can be saved since the
server may only need to broadcast the updated data once.

Since prefetching also consumes power, it is very
important to identify which data should be included in
the id list. Based on whether the server maintains informa-
tion about the client or not, two cache invalidation strategies
are used: the stateful server approach and the stateless server
approach. In [5], [7], we studied the stateful server
approach. In the proposed solution, a counter is maintained
for each data item. The counter associated with a data item
is increased by 1 when a new request for the data item
arrives. Based on the counter, the server can identify which
data should be included in the id list. Novel techniques are
designed to maintain the accuracy of the counter in case of
server failures, client failures, and disconnections. How-
ever, the stateful approach may not be scalable due to the
high state maintenance overhead, especially when handoffs
are frequent. Thus, we adopt the stateless approach in this
paper. Since the server does not maintain any information
about the clients, it is very difficult, if not impossible, for the
server to identify which data is hot. To save broadcast
bandwidth, the server does not answer the client requests
immediately; instead, it waits for the next IR interval. After
broadcasting the IR, the server broadcasts the id list (Lbcast)
of the data items that have been requested during the last IR
interval. In addition, the server broadcasts the values of the
data items in the id list. At the end of the IR, the client
downloads Lbcast. For each item id in Lbcast, the client checks
whether it has requested the server for the item or the item
becomes an invalid cache entry due to server update. If
either of the two conditions is satisfied, it is better for the
client to download the current version since the data will be
broadcast.

One important reason for the server not to serve requests
until the next IR interval is due to energy consumption. In
our scheme, a client can go to sleep most of the time and
only wakes up during the IR and Lblist broadcast time.
Based on Lblist, it checks whether there are any interested
data that will be broadcast. If not, it can go to sleep and only
wakes up at the next IR. If so, it can go to sleep and only
wakes up at that particular data broadcast time. For most of
the server initiated cache invalidation schemes, the server
needs to send the updated data to the clients immediately
after the update and the clients must keep awake to get the
updated data. Here, we trade off some delay for more
battery energy. Due to the use of UIR, the delay trade-off is
not that significant; most of the time (cache hit), the delay
can be reduced by a factor of m, where �mÿ 1� is the
number of replicated UIRs within one IR interval. Even in
the worst case (for cache miss), our scheme has the same
query delay as the previous IR-based schemes, where the
clients cannot serve the query until the next IR. To satisfy
time constraint applications, we may apply priority requests
as follows: When the server receives a priority request, it
serves the request immediately instead of waiting until the
next IR interval.

3.2 An Adaptive Prefetch Approach

The advantage of the approach depends on how hot the
requested data item is. Let us assume that a data item is
frequently accessed (cached) by n clients. If the server
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broadcasts the data after it receives a request from one of
these clients, the saved uplink and downlink bandwidth
can be up to a factor of n when the data item is updated.
Since prefetching also consumes power, we investigate the
trade-off between performance and power and propose an
adaptive scheme to efficiently utilize the power in this
section.

Each client may have different available resources and
performance requirements and these resources, such as
power, may change with time. For example, suppose the
battery of a laptop lasts three hours. If the user is able to
recharge the battery within three hours, power consump-
tion may not be an issue and the user may be more
concerned about the performance aspects such as the query
latency. However, if the user cannot recharge the battery
within three hours and wants to use it a little bit longer,
power consumption becomes a serious concern. As a design
option, the user should be able to choose whether to
prefetch data based on the resource availability and the
performance requirement. This can be done manually or
automatically. In the manual option, the user can choose
whether the query latency or the power consumption is the
primary concern. In the automatic approach, the system
monitors the power level. When the power level drops
below a threshold, power consumption becomes the
primary concern. If query latency is more important than
power consumption, the client should always prefetch the
interested data. However, when the power drops to a
threshold, the client should be cautious about prefetching.

There are two solutions to reduce the power consump-
tion. As a simple solution, the client can reduce its cache
size. With a smaller cache, the number of invalid cache
entries reduces and the number of prefetches drops.
Although small cache size reduces prefetch power con-
sumption, it may also increase the cache miss ratio, thereby
degrading performance. In a more elegant approach, the
client marks some invalid cache entries as nonprefetch and it
will not prefetch these items. Intuitively, the client should
mark those cache entries that need more power to prefetch,
but are not accessed too often.

3.2.1 The Adaptive Prefetch Approach

In order to implement the idea for each cached item, the
client records how many times it accessed the item and how
many times it prefetched the item during a period of time.
The prefetch-access ratio (PAR) is the number of prefetches
divided by the number of accesses. If the PAR is less than 1,
prefetching the data is useful since the prefetched data may
be accessed multiple times. When power consumption
becomes an issue, the client marks those cache items which
have PAR > � as nonprefetch, where � > 1 is a system
tuning factor. The value of � can be dynamically changed
based on the power consumption requirements. For
example, with a small �, more energy can be saved, but
the cache hit ratio may be reduced. On the other hand, with
a large �, the cache hit ratio can be improved, but at a cost of
more energy consumption. Note that, when choosing the
value of �, the uplink data request cost should also be
considered.

When the data update rate is high, the PAR may always
be larger than � and clients cannot prefetch any data.
Without prefetch, the cache hit ratio may be dramatically
reduced, resulting in poor performance. Since clients may
have a large probability to access a very small amount of
data, marking these data items as prefetch may improve the
cache hit ratio and does not consume too much power.
Based on this idea, when PAR > �, the client marks
� number of cache entries which have high access rate as
prefetch.

Since the query pattern and the data update distribution
may change over time, clients should measure their access
rate and PAR periodically and refresh some of their history
information. Assume Nx

acc is the number of access times for
a cache entry dx. Assume Nx

c acc is the number of access
times for a cache entry dx in the current evaluation cycle.
The number of access times is calculated by

Nx
acc � �1ÿ �� �Nx

acc � � �Nc acc;

where � < 1 is a factor which reduces the impact of the old
access frequency with time. A similar formula can be used
to calculate PAR.

3.3 Dealing with Frequently Updated Data

The IR-based approach is very useful in applications where
data items do not change frequently and, hence, clients can
cache these data items and use them to serve queries locally.
However, if the data are frequently updated, caching may
not be helpful. In this case, broadcasting the data on the air
may be a good solution. Following this idea, many indexing
techniques [13] have been proposed to address the trade-off
between query latency and power consumption. In most of
the indexing techniques, the index and the real data are
both broadcast. Since some data items may contain a large
amount of data (especially in the multimedia era), the
clients may have to wait for a long time before getting the
required data. In short, the indexing techniques are good for
small data size, while the IR-based approach is good for
large data size with less update frequency. However, in real
life, most applications may not work well with either
approach. For example, although the stock price of a
company is updated frequently, the company-related news,
such as the company profile, financial news, new product
release, and broker coverage, may only be updated several
times in a day. Since the stock price is updated too often, the
IR-based approach is not suitable. Similarly, indexing
techniques should not be used to maintain company-related
news due to large data sizes that need to be updated. We
propose applying multiple techniques to deal with the
problem. The central idea is to differentiate the frequently
updated data part from others. In other words, a data item
can be divided into two data components: the hot component
and the cold component. The hot component is the data part
which is frequently updated, while the cold component is
the data part which is not frequently updated. Indexing
techniques are used to access those data components that
are frequently updated, whereas IR-based techniques are
used to access those data components which are not
frequently updated. Considering the above example,
indexing techniques (or simple broadcasting) are used to
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access the stock prices, whereas IR-based techniques are
used to access the company news.

To implement the idea, we modify the UIR-based
approach so that it can be used to deal with frequent
updates. The idea is to broadcast the frequently updated
data components multiple times during an IR interval. This
can be done by broadcasting them after each UIR or IR.
Since most of the frequently updated data components have
small data size, broadcasting them should not add too
much overhead. If the client access pattern is known, the
hot data components should be broadcast more often than
the cold data components to reduce the average query
latency. If multiple channels are available, the server can
use one channel to deliver the frequently updated data
components using indexing techniques and use another
channel to deliver the cold components using the UIR-
based techniques. The process of dividing a data item into
two components should be mutually agreed upon by the
clients and the server. When a client needs to serve a query,
it has to know where to locate the components of the data
item. It may have to access one component from the local
cache and download the other one from the broadcast
channel.

3.4 The Algorithm

The formal description of the server and the client
algorithm is shown in Fig. 2 and Fig. 3, respectively. As
shown in Fig. 2, the server is responsible for constructing
and broadcasting the IR and UIR at predefined time
interval. As shown in Fig. 3, the client validates its cache
based on the received IR or UIR. If the client missed the
previous IR, it has to wait for the next IR. Each data dx has
two components, dhx and dcx. If the client has a valid cached
copy of the dcx, it still needs to get the dhx from the UIR or IR
in order to serve the query.

4 PERFORMANCE EVALUATION

The performance evaluation includes three parts. In part 1
(Section 4.2), we demonstrate the effectiveness of the
proposed approach on improving the cache hit ratio.
Part 2 (Section 4.3) demonstrates the effectiveness of the
proposed approach on reducing the power consumption.
The effectiveness of dealing with frequently updated data is
shown in Part 3 (Section 4.4).

4.1 The Simulation Model and System Parameters

In order to evaluate the efficiency of various invalidation
algorithms, we develop a model which is similar to that
employed in [4], [12], [15]. It consists of a single server that
serves multiple clients. The database can only be updated
by the server, whereas the queries are made on the client
side. As shown in Fig. 4, the server is responsible for
sending data and control information on the broadcasting
channel. Based on the information, clients download data to
serve queries and download control information to help
maintain cache consistency. If there is a cache hit, the client
can serve the query locally; otherwise, it sends an uplink
request to the server requesting the data. On receiving the
request, the server puts the data on the broadcast channel.

From the server point of view, the database is divided
into two subsets: the hot data subset and the cold data
subset. The hot data subset includes the first 100 items (out
of 2,000 items) and the cold data subset includes the
remaining data items of the database. From the client point
of view, the database is divided into three subsets: the hot
data subset, the medium data subset, and the cold data
subset. The hot data subset includes 20 randomly (based on
the client id) chosen items from the first 100 items. The
medium data subset includes the remaining 80 items in the
first 100 items of the database. The cold data subset includes
the remaining data items of the database. A client has a
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probability of 75 percent to access the data in its hot set, a

probability of 10 percent to access the data in the medium

set, and a probability of 15 percent to access the data in the

cold set. The traffic pattern is based on the following

observations: Suppose some users are interested in getting

financial information of some companies. Most people in

the software sector are interested in well-known software

companies, such as Microsoft and Oracle, but not small

software companies, such as CT Holdings. Also, people in

the software sector may not have too much interest in

companies such as Ford or GM, although they are hot items

in the automobile sector. As a result, for clients who are

interested in the software sector, Microsoft and Oracle are

hot data, Ford and GM are medium data (which are hot

data for people interested in the automobile sector), and

other small companies are cold data.

4.1.1 The Server

The server broadcasts IRs (and UIRs in our algorithm)

periodically to the clients. The server assigns the highest
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priority to the IR/UIR broadcasts and equal priorities to the

rest of the messages. This strategy ensures that the IRs (or

UIRs) can always be broadcast over the wireless channels

with the broadcast interval specified by the parameter L (or
L
m). All other messages are served on a FCFS (first-come-

first-serve) basis. It is possible that an IR or UIR time

interval reaches while the server is still in the middle of

broadcasting a packet. We use a scheme similar to the

beacon broadcast in IEEE 802.11 [11], where the server

defers the IR or UIR broadcast until it finishes the current

packet transmission. However, the next IR or UIR should be

broadcast at its originally scheduled time interval.
The server generates a single stream of updates

separated by an exponentially distributed update inter-
arrival time. All updates are randomly distributed inside

the hot data subset and the cold data subset, whereas
33.3 percent of the updates are applied to the hot data

subset. In the experiment, we assume that the server
processing time (not data transmission time) is negligible
and the broadcast bandwidth is fully utilized for broad-

casting IRs (and UIRs) and serving client's data requests.

4.1.2 The Client

Each client generates a single stream of read-only queries.

Each new query is generated following an exponentially
distributed time. The client processes generated queries one
by one. If the referenced data are not cached on the client

side, the data ids are sent to the server for fetching the data
items. Once the requested data items arrive on the channel,

the client brings them into its cache. To simplify the
presentation and simulation, we assume no data item is
marked as nonprefetch (e.g., � is equal to the cache size)

except in Section 4.3.1, where the effects of power
consumption are evaluated. We do not model disconnec-

tions except Section 4.2.3. The default system parameters
are listed in Table 1.

4.2 Simulation Results: Improving the Cache Hit
Ratio

4.2.1 The Cache Hit Ratio

Fig. 5a shows the cache hit ratio as a function of the number
of clients. As can be seen, the cache hit ratio of our
algorithm increases as the number of clients increases, but
the cache hit ratio of the TS algorithm does not change with
the number of clients; e.g., TS (n = 1) and TS (n = 100) have
the same cache hit ratio. When the number of clients in our
algorithm drops to 1, the cache hit ratio of our algorithm is
similar to the TS algorithm. In the TS algorithm, a client
only downloads the data that it has requested from the
server. However, in our algorithm, clients also download
the data which may be accessed in the near future.
Considering 100 clients, due to server update, one hot data
item may be changed by the server and the clients may have
to send requests to the server and download the data from
the server. In the TS algorithm, it may generate 100 cache
misses if all clients need to access the updated data. In our
algorithm, after a client sends a request to the server, other
clients can download the data. In other words, after one
cache miss, other clients may be able to access the data from
their local cache. Certainly, this ideal situation may not
always occur, especially when the cache size is small or the
accessed data item is a cold item. However, as long as some
downloaded data items can be accessed in the future, the
cache hit ratio of our algorithm will be increased. Due to
cache locality, a client has a large chance to access the
invalidated cache items in the near future, so downloading
these data items in advance should be able to increase the
cache hit ratio. As the number of clients decreases, clients
have less opportunity to download data requested by others
and, hence, the cache hit ratio decreases. This explains why
our algorithm has similar cache hit ratio when the number
of clients drops to 1. Fig. 5b shows the cache hit ratio under
different cache sizes when the number of clients is 100.
Based on the above explanation, it is easy to see that the
cache hit ratio of our algorithm is always higher than that of
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the TS algorithm for one particular cache size (cache size is

20 items, 100 items, or 500 items).
From Fig. 5b, we can see that the cache hit ratio grows as the

cache size increases. However, the growing trend is different

between the TS algorithm and our algorithm. For example, in

the TS algorithm, when the update arrival time is 1s, the cache

hit ratio does not have any difference when the cache size

changes from 20 data items to 500 data items. However, in our

algorithm, under the same situation, the cache hit ratio

increases from about 33 percent to 61 percent. In our

algorithm, clients may need to download interested data for

future use, so a large cache size may increase cache hit ratio.

However, in the TS algorithm, clients do not download data

items that are not addressed to them. When the server

updates data frequently, increasing the cache size does not

help. This explains why different cache size does not affect the

cache hit ratio of the TS algorithm when Tu � 1s.

As shown in Fig. 5b, the cache hit ratio drops as the

update arrival time decreases. However, the cache hit ratio

of the TS algorithm drops much faster than our algorithm.

When the update arrival time is 10; 000s, both algorithms

have similar cache hit ratio for one particular cache size.

With c � 500 items, as the update arrival time reaches 1s,

the cache hit ratio of our algorithm still stays around

61 percent, whereas the cache hit ratio of the TS algorithm

drops below 7 percent. This can be explained as follows:

When the update arrival time is very low (e.g., 1s), most of

the cache misses are due to hot data access; when the

update arrival time is very high (e.g., 10; 000s), most of the

cache misses are due to cold data access. Since our

algorithm is very effective at improving cache performance

when accessing hot data, the cache hit ratio of our algorithm

can be significantly improved when the update arrival time

is low. However, as the mean update arrival time drops

further (Tu < 1s), the cache hit ratio of our algorithm drops
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TABLE 1
Simulation Parameters

Fig. 5. A comparison of the cache hit ratio (Tq � 100s). (a) Shows the cache hit ratio as a function of the number of clients when the cache size is

100 items. (b) Shows the cache hit ratio under different cache sizes when the number of clients is 100.



much faster than before. At this time, the hot data changes

so fast that the downloaded hot data may be updated before

the client can use it, hence failing to improve the cache hit

ratio. Note that, when the update arrival time is very high,

the cache performance depends on the LRU policy and it is

very difficult to further improve the cache hit ratio except

by increasing the cache size.

4.2.2 The Throughput and the Query Delay

Since the broadcast bandwidth is fixed, the server can only

transmit a limited amount of data during one IR interval

and it can only serve a maximum number (�) of queries

during one IR interval. However, the throughput (the

number of queries served per IR interval) may be larger

than � since some of the queries can be served by accessing

the local cache. Since our algorithm has a higher cache hit

ratio than the TS algorithm, our algorithm can serve more

queries locally and the clients send fewer requests to the

server. As shown in Fig. 6a, when the query generate time

reduces to 30s, the number of requests in the TS algorithm is

larger than � and some queries cannot be served. As a

result, the throughput of the TS algorithm remains at 35,

whereas the throughput of our algorithm reaches 70. In the

TS algorithm, since the broadcast channel has already been

fully utilized when Tq � 60s, further reducing the query

generate time does not increase the throughput. When the

query generate time is low, the broadcast channel has

enough bandwidth to serve client requests and, hence, both

algorithms can serve the same number of queries (although

they have difference query latency).
In the case of a cache miss, the TS algorithm and our

algorithm have the same query delay. However, in the case

of a cache hit, our algorithm can reduce the query delay by

a factor of m. As shown in Fig. 6b, as the mean update

arrival time increases, the cache hit ratio increases and the

query delay decreases. Since our algorithm has a higher

cache hit ratio than the TS algorithm, the query delay of our

algorithm is shorter than the TS algorithm. For example,

with Tu � 10; 000s, our algorithm reduces the query delay
by a factor of 3 compared to the TS algorithm.

Fig. 7 shows how the cache locality affects the query delay.
When ph � 0, 90 percent of the data accesses are uniformly
distributed among the 4,900 data items. Since the cache size is
too small, the cache hit ratio is almost zero and then the TS
algorithm and our algorithm have similar query delay. Since
data updates can reduce the cache hit ratio, both algorithms
have lower query delay when Tu � 1; 000s than that when
Tu � 10s. As the hot data access probability increases, the
query delay of both algorithm drops, but the query delay of
our algorithm drops much faster. When ph � 0:9, clients only
access the first 100 items and the cache hit ratio is close to 100
percent in our algorithm. As a result, the query delay of our
algorithm drops to almost 2s, whereas the query delay of the
TS algorithm is still larger than 10s.

4.2.3 The Effects of Disconnections

In order to evaluate the effects of disconnections, we change
the simulation model as follows: Each client generates a
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Fig. 6. A comparison of the throughput and query delay. (a) Shows number of queries served per IR interval (Tu � 3s, c � 100 items). (b) Shows the

query delay as a function of the mean update arrival time (Tq � 100s, c � 100 items).

Fig. 7. The effects of hot data access probability (ph) on the query delay

(c � 100 items, Tq � 100s).



single stream of read-only queries. Each new query is
separated from the completion of the previous query by
either an exponentially distributed query generate time or
an exponentially distributed disconnection time (with mean
of Tdis). A client can only enter the disconnection mode
when the outstanding query has been served.

Fig. 8 shows the effects of disconnections on cache hit
ratio. The x-axis represents the disconnect probability. We
measure three mean disconnection times 50s, 200s, and
1; 000s. Fig. 8a shows the cache hit ratio of the original
TS algorithms [3]. When the mean disconnection time is 50s,
which is less then w � L seconds, clients can still validate
their cache by using the IR and the cache hit ratio does not
reduce too much as the disconnection time (or probability)
increases. However, if a client disconnects longer than w � L
seconds (e.g., 200 s, 1; 000 s), it has to discard the whole
cache. As shown in the figure, the cache hit ratio drops
dramatically. Previous techniques [3], [12], [15], [24] can be
used to deal with the long disconnection problem. To
simplify the presentation and simulation, in the following
comparisons, we assume that the client, when reconnected,
will send a request to the server to verify the validity of the
local cache. Fig. 8b compares the cache hit ratio of the
TS algorithm and our algorithm under this modification.
Since the client keeps the valid cache items even though it
has been disconnected for a long time, the cache hit ratio of
both algorithms drops slowly compared to Fig. 8a. As the
mean disconnection time increases to 1; 000s, the cache hit
ratio of the TS algorithm still drops very fast, even with the
modification. On the contrary, our algorithm performs a
little bit better. This can be explained by the fact that our
algorithm allows prefetch, by which the clients can update
their invalid cache entries.

4.3 Simulation Results: Reducing the Power
Consumption

In the IR/UIR-based cache invalidation approaches,
clients can enter doze mode most of time and only wake
up during IR and UIR broadcasting time. Since the IR
size and the UIR size are very small compared to the data

size, the number of prefetches represents a large part of
the energy consumption. Thus, we use the number of
prefetches per IR interval as a performance metric to
evaluate the energy consumption.

To simplify the simulation, we choose � to be 2. As
explained in Section 3.2, � should be larger than 1. After a
cache miss, the client sends an uplink request to ask for the
data and downloads the data to its local cache. Although
the uplink request packet size is much smaller than the
downloaded data size, sending a uplink request may also
consume a large amount of energy. This is due to the
connection setup delay and the distance between the base
station and the client. To simplify the presentation and
simulation, we suppose the power consumption of down-
loading a data item is similar to that of sending an uplink
request and � � 2 can be used to optimize the power
consumption. During the simulation, we found that � and
the refreshment cycle time does not affect the performance
too much.3 Thus, we fix these two parameters, i.e., � � 0:2,
the refreshment cycle is 10 times the mean query generate
time. The no-nonprefetch algorithm and no-prefetch algorithm
are modifications of our algorithm. The no-nonprefetch
algorithm (i.e., � is infinitely large) does not mark any data
item as nonprefetch. The no-prefetch algorithm (i.e., � � 0 and
� � 0) does not perform any prefetch. Also, we do not
consider the frequent data update problem (i.e., L � ;).

4.3.1 The Effects of � (The Number of Cache Entries

to Prefetch)

As shown in Fig. 9a, the number of prefetches increases as
the mean update arrival time decreases for the no-
nonprefetch approach and our algorithm (with � 6� 0).
When the mean update arrival time decreases, data are
updated more frequently and more clients have cache
misses. As a result, the server broadcasts more data during
each IR and the clients prefetch more data to their local
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3. Our simulation is always in a steady state. In order to see the effects of
�, the client access pattern should be changed. That is, the hot data subset
needs to be changed with time. Since this is not the major concern of the
paper, we did not model it.

Fig. 8. The effects of disconnection on cache hit ratio (Tq � 100s, Tu � 100s, c � 100 items).



cache. However, with � � 0, the number of prefetches starts
to drop when the mean update arrival time is lower than 3s.
This can be explained by the fact that the number of
prefetches in our algorithm with � � 0 is determined by
PAR. As the mean update arrival time drops below 3s,
most cache entries have PAR < � and they are marked as
nonprefetch. Since � represents the number of cache entries
that are marked as prefetch, the number of prefetches
increases as � increases. When � equals the cache size, the
number of prefetches in our algorithm �� � 200� and the no-
nonprefetch approach becomes equal.

Prefetching data into the local cache can improve the
cache hit ratio. When some data items are marked as
nonprefetch, the cache hit ratio may be reduced. As shown
in the Fig. 9b, the cache hit ratio drops as � decreases. Note
that, when � � 200, our algorithm has the same cache hit
ratio as the no-nonprefetch approach. When the mean
update arrival time is high, there are not too many data
updates and most of the queried data can be served locally.
When the mean update arrival time decreases, data is
updated more frequently. With prefetching, the cache hit
ratio drops more slowly. For example, the prefetching
approaches have a similar cache hit ratio when the mean
update arrival time drops from 1; 000s to 10s. On the other
hand, without prefetching, the cache hit ratio may be
significantly dropped. For example, the no-prefetch
approach has a very low cache hit ratio when Tu � 10s,
but relatively high cache hit ratio when Tupdate � 1; 000s.
When the mean update arrival time drops below 0:3s, the
cache hit ratio of the our approach with � � 0 becomes
similar to that of the no-prefetch approach.

From Fig. 9, we can see that the number of prefetches is
related to the cache hit ratio. For example, the no-
nonprefetch approach has the highest number of prefetches
and it has the highest cache hit ratio. The no-prefetch does
not have prefetch overhead, but it has the lowest cache hit
ratio. When � � 0, the number of prefetches in our approach
significantly drops at Tu � 3s and its cache hit ratio also
dramatically drops. Although there is a trade-off between
the cache hit ratio and the number of prefetches, our

approach outperforms the no-nonprefetch approach in

general. For example, when Tu � 0:1s, our approach with

� � 20 has a similar cache hit ratio to the no-nonprefetch

approach, but it reduces the number of prefetches by a

factor of 4. It's interesting to see that our approach with

� � 0 has negligible prefetch overhead when the mean

update arrival time is very low or very high and it has high

cache hit ratio when the mean update arrival time is high.

4.3.2 The Effects of Cache Size on a Simple Solution

The number of prefetches can be reduced by reducing �. As

an alternative, the number of prefetches can also be reduced

by simply reducing the cache size. Fig. 10 shows the effects

of cache size on the cache hit ratio and the number of

prefetches. Similarly to Fig. 9, there is a trade-off between

the cache hit ratio and the number of prefetches. Although

reducing the cache size can always reduce the prefetch

overhead, we do not recommend this solution since it may

dramatically reduce the cache hit ratio. For example, with

Tu � 1; 000s, as the cache size reduces from 200 items to

20 items, the cache hit ratio is almost reduced by half.

Moreover, when Tu � 1; 000s, the number of prefetches is

very low (below 1) and the power consumption is mainly

determined by other factors, such as serving query from

local cache. Thus, further reducing the number of prefetches

cannot save too much energy and the cache hit ratio may be

dramatically reduced.

4.4 Simulation Results: Handling Frequently
Updated Data

In this section, we compare the performance of the

following algorithms:

. Indexing: In the indexing approach [13], data and
indexes are periodically broadcast on the air. Even
though adding index can save power, it also
increases the query latency. A simple broadcasting,
which does not broadcast the indexes, provides the
lower bound on query delay. The lower bound is
used to compare with the proposed approach.
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Fig. 9. The effects of � (Tq � 100s, c � 200 items, n � 100).



. Ideal UIR: This is the algorithm presented in
Section 3.4. To simplify the comparisons, we do
not consider energy consumption issues (i.e., � is
equal to the cache size). Since the server may not be
able to know which data are the hot data, it is
difficult to find Lhot. Thus, we name it ideal UIR.
Note that techniques proposed in [22] can be used to
identify the hot data items and to approximate the
ideal UIR algorithm.

. Hybrid UIR: Lhot � ; is the only difference between
the hybrid UIR approach and the ideal UIR
approach.

. Pure UIR: In this approach, data items are not
divided into hot and cold components.

Fig. 11a shows the query delay as a function of the data
size for the indexing approach under different update
arrival time. As can be seen, the query delay is proportional
to the data size. When the data size is small, the delay is

small. When the data size increases to 10,000 bytes, the
delay is too high to be tolerable. Thus, the indexing
approach is not suitable for applications which have very
large data sizes and have strict delay requirements. As can
be seen, the query delay of the indexing approach is not
affected by the mean update arrival time.

Fig. 11b shows the query delay as a function of the mean
update arrival time for the pure UIR approach under
different data item sizes (S � 1; 000 bytes, S � 3; 000 bytes,
and S � 1; 000 bytes). When the mean update arrival time
decreases, the data is updated more frequently and more
clients have cache misses. As a result, the query delay
increases. As the mean update arrival time becomes very
small, many clients have cache misses and their requests
form a queue at the server. Since it takes a longer time to
send a large data item than a small data item, clients may
need to wait for a longer time if the data size is large. If the
server receives more than the maximal served queries (�)
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Fig. 10. The effects of cache size (Tq � 100s, n � 100). (a) Shows the number of prefetches as a function of the mean update arrival time. (b) Shows

the cache hit ratio as a function of the mean update arrival time.

Fig. 11. A comparison of the query delay. (a) Shows the query delay as a function of the data size. (b) Shows the query delay as a function of the

mean update arrival time for the pure UIR approach (Tq � 40s; c � 100 items, n � 100).



during each IR interval, many queries may not be served
and the query delay may be out of bound. Due to the data

size difference, the value of � varies. For example, with
Tu � 0:1s, the query delay of S � 1; 000 is still less than 15s,

but the query delay of S � 10; 000 becomes infinitely high.
Fig. 12 compares the query delay of the pure

UIR approach, the hybrid UIR approach, and the ideal

UIR approach. As can be seen, the ideal UIR approach
outperforms the hybrid approach, which outperforms the
pure UIR approach. In the ideal approach, most of the

queries can be served after a UIR is broadcast and the query
delay is very low. In the hybrid approach, most of the

queries can only be served after the IR is broadcast and the
query delay becomes longer compared to the ideal UIR. The

query delay of the pure UIR approach becomes infinitely
high when Tq drops below 100s. This is due to the fact that

the cache hit ratio of the pure UIR approach is much smaller
than the other two. Since the pure UIR approach does not

differentiate between the hot component and the cold
component, the mean update arrival time equals the hot
component update arrival time, Th � 0:01s, and its cache hit

ratio is near 0. In the hybrid UIR approach and the ideal
UIR approach, the mean update arrival time is Tc � 100s

and their cache hit ratio is pretty high. Moreover, in the
pure UIR approach, broadcasting the IR and UIR occupies a

large amount of bandwidth since many data items are
updated and their ids must be added to the IR and UIR.

5 FUTURE WORKS

Although prefetching has been widely used to reduce the
response time in the Web environment, most of these

techniques [14] concentrate on estimating the probability of
each file being accessed in the near future. They are

designed for the point-to-point communication environ-
ment, which is different from our broadcasting environ-

ment. As we know, the presented simple and effective
prefetching technique is the first applied to IR-based cache
invalidation strategies. To further improve the performance,

techniques based on user profile [9], which indicates the

general information types that a user is interested in
receiving, will be studied in the future.

The proposed PAR approach did not consider the effects
of varying data size and the data transmission rate.
However, the ideal data item to be prefetched should have
a high access probability, low update rate, small size, and a
long retrieval delay. Along this line, we can design prefetch
functions which incorporate these factors. Since many of
these factors are usually not constant, techniques such as
those used in [21] can be applied to estimate these
parameters.

By reducing the number of items marked for prefetch,
we can reduce the number of prefetches. Let ak be the
percentage of the energy left. It is desired to reduce the
amount of prefetches to some percentage (f�ak�) of the
original when ak drops to a threshold. A simple discrete
function can be as follows:

f�ak� �

100% 0:5 < ak � 1:0
70% 0:3 < ak � 0:5
50% 0:2 < ak � 0:3
30% 0:1 < ak � 0:2
10% ak � 0:1:

8>>>><>>>>: �1�

At regular intervals, the client reevaluates the energy
level ak. If ak drops to a threshold value, Np � Np � f�ak�.
The client only marks the first Np items, which have the
maximum prefetch value, as prefetch. In this way, the
number of prefetches can be reduced to prolong the system
running time.

The proposed data component concept can be extended
to a mixed data access mechanism for mobile environments.
In this mechanism, caching, broadcasting, and pull-based
delivery are used together to minimize the access time and
energy consumption. Logically speaking, data are stored in
a hierarchy of media where the most frequently accessed
data are cached in the client, the commonly requested (or
frequently updated) data subset is temporarily stored on
the broadcast channels, and the rest of the data must be
pulled from the server via explicit client requests. IRs or
UIRs are broadcast to help clients validate their cache. Data
caching and push-based data access alleviate pull-based
request considerably since most frequently accessed data
are retrieved either from the client's cache or from the
broadcast channel. On the other hand, requests for infre-
quently accessed data can always be served on the point-to-
point channels. When a user issues a query, the client first
searches its cache. If there is a valid copy in the cache, an
answer replies immediately. Otherwise, the client attempts
to obtain the data item from the server site. The hot spot of
the uncached data can be obtained and broadcast by asking
the clients to monitor the cache misses and piggyback the
information to the server on some subsequent pull requests.

6 CONCLUSIONS

IR-based cache invalidation techniques have received
considerable attention due to their scalability. However,
they have some drawbacks such as long query delay, low
bandwidth utilization, and unsuitability for applications
where data change frequently. In this paper, we proposed
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Fig. 12. A comparison of the query delay (Tc � 100s; Th � 0:01s,

c � 100 items, n � 100).



solutions to deal with these issues. By deferring the service

requests, the server supports prefetches, which are used to

improve the cache hit ratio. Based on a novel prefetch-access

ratio concept, the proposed scheme can dynamically

optimize performance or power based on the available

resources and the performance requirements. Based on a

data component concept, different techniques (indexing

and caching) are applied to deal with different components

of the data according to their update frequency. Simulation

results showed that the proposed algorithm can cut the

query delay by a factor of 3 and double the throughput

compared to the TS algorithm. Simulation results also

demonstrated the effectiveness of the prefetch-access ratio

concept and the data component concept.
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