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Abstract—Mobile sensors are useful in many environments because they
can move to increase the sensing coverage. In this paper, we present a mo-
bile sensor prototype in which the Mica2 sensor node is used to control the
movement of the robot built with commercial off-the-shelf (COTS) compo-
nents. We use a sensor relocation application to demonstrate the feasibility
of our design. In the sensor relocation application, after asensor node fail-
ure creates a coverage hole, a mobile sensor node is relocated to cover the
hole in a timely and energy-efficient way. We present a distributed sensor
relocation algorithm and provide novel solutions to implement this algo-
rithm in our mobile sensor platform. Experimental results show that our
relocation algorithm can reduce the sensor relocation timeand balance the
energy consumption of the mobile nodes.

Index Terms: Sensor networks, mobile sensor, mobile robot,
mote, sensor relocation.

I. I NTRODUCTION

Recent advances in hardware design are enabling low-cost
sensors that have sophisticated sensing, communication, and
computation capabilities. These sensors communicate via ra-
dio transmitters/receivers to form a multihop wireless network,
i.e., a distributed wireless sensor network. Typical applications
of wireless sensor networks are target tracking, environmental
monitoring, and surveillance [1].

In order to support application requirements, sensor nodes
must be deployed properly to reach an adequate coverage level
to sense the phenomena or events of interest [12], [10]. For ex-
ample, in target tracking [26], there should be enough sensor
nodes deployed along the track of the target. In many cases,
precise or manual sensor deployment is not possible, especially
in some hostile environments such as disaster areas. Further,
sensor nodes are subject to power depletion and failures, and
may be affected or destroyed by external forces (e.g., wind,fire),
creating coverage holes that are not covered by any sensor node
[20], [25]. As the network condition or application requirements
change, sensor nodes may need to be redeployed to recover fail-
ures or respond to occurring events. Since redeploying extra
sensors may not be possible in many cases, there is a need to
make use of mobile sensors, which can be relocated to achieve
the required coverage level or response to new events [22].

Early works on mobile sensor networks [9], [27], [23], [24]
focus on designing algorithms to deploy these mobile sensors,
and there is not much work on implementation and evaluation
due to the difficulty of building mobile sensors. In the litera-
ture, some existing mobile sensor prototypes are the Robomote
[18] and the mobile robot in [14]. However, in these mobile
sensors, the sensor nodes and the robots are integrated, andthe

sensor nodes are custom designed. As a result, existing pop-
ular applications developed for popular sensor platforms such
as Mica2/TinyOS [4], [6] cannot be used. To use their mobile
sensor, the applications have to be rewritten in their special lan-
guage.

In this paper, we present our mobile sensor design which is
based on commercial off-the-shelf (COTS) components. Our
mobile sensor is based on the popular sensor node platform
Mica2 [4] and mobile robot is built with COTS. The Mica2 sen-
sor node will run TinyOS, and some instructions are providedto
control the mobile robot. As a result, existing sensor network
applications can be run on our mobile sensors without any mod-
ification. By using the added instructions, the sensor node can
control the movement of the robot.

We use a sensor relocation application [22] to demonstrate
the feasibility of our design. In the sensor relocation applica-
tion, after a sensor node failure creates a coverage hole, a mo-
bile sensor node is relocated to cover the hole in a timely and
energy-efficient way. The sensor relocation algorithm was pro-
posed in our early work [22]. However, it is still a challenge
to design and implement a distributed sensor relocation algo-
rithm in the resource constrained sensor node. In this paper, we
will design a distributed sensor relocation algorithm and pro-
vide novel solutions to implement this algorithm in our mobile
sensor platform. Experimental results show that our relocation
algorithm can reduce the sensor relocation time and balancethe
energy consumption of the mobile nodes.

The rest of the paper is organized as follows. In Section II,
we first outlines the requirements for a typical sensor relocation
application. Section III discusses some design issues in the relo-
cation algorithm. In Section IV, the hardware and software de-
sign, and the implementation of our testbed are described. The
results of experimental evaluations are presented in Section V.
Section VI discusses related work and Section VII concludesthe
paper.

II. A PPLICATION REQUIREMENTS

Our system design is motivated by the requirements of a typ-
ical sensor relocation application. The general objectiveof such
an application is to relocate a mobile sensor to recover a sensor
failure or fill a coverage hole as soon as possible, while generat-
ing minimum effect on other applications in the network and the
sensing topology. Also, the failure recovery should be accom-
plished within a time constraint to reduce the interruptionon the



application. In summary, several application requirements must
be satisfied to make this system useful in practice:
• Timely response: The relocation latency determines the ef-
fectiveness of a sensor relocation scheme. In order to success-
fully complete a task or minimize the adverse effects, the sensor
failure should be recovered within a tolerable time constraint.
• Energy efficiency: It is crucial to prolong the lifetime of both
the sensor nodes and the network. If the mobile sensor node
travels a long distance to replace the failed node, it may runout
of power and create a new coverage hole. Therefore, a good
scheme should be energy-aware.
• Dynamic reconfiguration: The system should be dynami-
cally adjustable to deal with different requirements. Since rec-
ollecting the deployed nodes for reprogramming usually takes
long time and may not be possible sometimes, it is necessary
to enable dynamic reconfiguration in the system. For example,
critical tasks usually require a short recovery latency while the
latency can be relaxed when the task is not urgent.

III. T HE SENSORRELOCATION DESIGN

To achieve the design goals illustrated in the last section,a
mobile sensor node should be found and relocated to the desti-
nation in a timely and energy-efficient way. Using flooding to
find the redundant sensors may cause significant message over-
head. In [22], we proposed a quorum based approach where the
sensor field is divided into cells, and each cell has a cell head.
The cells with redundant nodes advertise to other cells in a row.
The cells that need redundant sensors send queries to cells in
each column. Since there is always an intersection cell between
each row and each column, the intersection cell head will be
able to serve the query.

Having obtained the location of the redundant sensor, we need
to determine how to move the sensor to the target location (des-
tination). Moving it directly to the destination is a possible so-
lution. However, it may take a longer time than the application
requirement. Moreover, moving a sensor for a long distance
consumes too much energy. If the sensor dies shortly after it
reaches the destination, this movement is wasted and another
sensor has to be found and relocated. Next, we first describe the
cascaded movement solution proposed in [22], and then describe
how to implement this solution in a distributed way.

A. Sensor Relocation based on Cascaded Movement

The idea ofCascaded Movement [22] can be explained by
Fig. 1. As shown in the figure, sensorS0 fails andS3 is the
redundant sensor. IfS3 moves directly to the destination, its
power may run out due to the long distance movement. IfS3

moves toS2, S2 moves toS1 andS1 moves toS0, the power
consumption of these mobile nodes can be balanced. However,
the delay is still high. In cascaded movement, messages are first
exchanged amongS3, S2, andS1. Then three nodes move si-
multaneously; i.e.,S3 moves to replaceS2, S2 moves to replace
S1, andS1 moves to the destination. In this way, delay can be
significantly reduced. Next, we present the algorithm whichis
used to select the cascaded schedule.

Direct:

Cascaded:

S3

S2

S1

S0

S3

S2

S1 S0

Fig. 1. Cascaded Movement

In the cascaded movement algorithm [22], we assume that the
radio links are typically symmetric, and each sensor node knows
its location. The location information can be obtained by using
GPS [2], triangulation [17] or other means. The sensor network
is modeled as a complete weighted graphG(V, E), where a ver-
tex corresponds to a mobile sensor node. The edge weight is the
distance between two nodes. The following notations are used
for describing the algorithm.
Notations
• Si: node i’s ID. The target position is represented byS0, and
the redundant node is denoted asSr.
• ti: the departure time ofSi’s movement
• Ti: Si’s recovery delay constraint
• Pi: the remaining energy ofSi before movement
• Ei: the total energy consumption of the cascading schedule
Si calculates
• Emin: the minimum of the remaining energy after movement
• dij : distance betweenSi andSj

• vi: nodeSi’s moving speed
SupposeSj moves to replaceSi. Sj is calledSi’s successor,

andSi is calledSj ’s predecessor. In order not to interrupt the
supported application, each nodeSi is associated with a recov-
ery delay constraintTi, within which Si’s successor must take
its place after its movement.Ti is determined by the application
based onSi’s sensing task, the size of the coverage hole gener-
ated bySi’s movement, and other factors.Si’s departure timeti
is normalized to be the time period after the relocation request
is sent andt0 is set to 0. Due to the recovery delay restriction,
an inequalitydji/vj − (ti − tj) ≤ Ti must be satisfied ifSj is
Si’s successor.tj is usually set toTi + ti − dji/vj (the upper
limit) such that more nodes can be the candidates to choose for
Si’s successor.

A cascaded movement schedule is a set of cascading nodes
and their departure time in a relocation. For energy-efficiency,
the schedule should minimize the total energy consumption and
maximize the minimum remaining energy so that no individual
sensor is penalized. However, in most cases, these two goals
cannot be satisfied at the same time. Based on its simulation
results, [22] proposes that the best schedule isthe one with the
minimum difference between the total energy consumption and
the minimum remaining power.

To find the best schedule, [22] proposes a centralized mod-
ified Dijkstra’s algorithm to calculate the shortest cascaded
movement schedule, which is the schedule with the least total
energy consumption. In this algorithm, an edge that does not
satisfy the recovery delay constraint is not selected in anycas-
cading path. To find the best schedule, [22] first calculates the
shortest cascaded movement schedule and records its total en-



ergy consumptionE and its minimum remaining energyEmin.
Then, all the edgesSiSj are deleted ifPi − dij ≤ Emin and
di0 ≥ dj0. Therefore a new graph is generated. This process
continues and a new shortest schedule is calculated as long as
the difference between the total energy consumption and the
minimum remaining energy is increased compared to the pre-
viously calculated schedule. When the process terminates,the
schedule calculated before the last schedule is the best schedule,
i.e., the schedule with the smallest difference between thelast
two schedules.

B. Distributed Cascaded Sensor Relocation Algorithm

The aforementioned modified Dijkstra’s algorithm is central-
ized, and hence has disadvantages such as single point of failure
and not scalable. In the following, we present a distributed, dy-
namic programming-based approach and discuss how to imple-
ment it in resource constrained sensor nodes.
• We observe that the shortest cascading schedule should not
include a node who is farther away fromS0 thanSr. Based
on the direct distance toS0 (the length of the edge connecting
them), nodes that are closer toS0 thanSr together withSr are
sorted into a sequence denoted as below:

N0, N1, · · · , Nn.

Here,N0 refers toS0, Nn refers toSr, and the total number of
nodes isn + 1. If two nodes are at the same distance toS0, the
node with a smaller node ID is numbered first.
• Let Em(i, l) be the minimum total energy cost of a cascad-
ing path fromNi to N0 that hasl intermediate nodes from
Ni−1, Ni−2, · · · , N1 (l ≤ i − 1). The direct distance fromNi

to Nj is denoted asD(i, j). Then the shortest cascading path on
the current graph, denoted asEm(n, n−1), can be computed as
follows:

Em(i, l) =

8
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>

>

:

D(i, 0) l = 0,

min{ D(i, j) + Em(j, l − 1) |
D(i, j)/N ′

i
s speed ≤ Tj + tj

&& i > j ≥ 1} otherwise.

(1)

Here,1 ≤ i ≤ n and0 ≤ l ≤ n − 1.
Fig. 2 shows an example in which a cascading path consists of
S0, S1, S2, S3 andSr.

This distributed solution is broadcast-based and needs mul-
tiple iterations. In each iteration,S0 first initiates a schedule
computation by broadcasting a request message. A nodeSj re-
ceiving the request first determines if it can become the succes-
sor of the senderSi based on the following two conditions: (1)
it can takeSi’s place withinTi; (2) its remaining energy after
moving is no larger than the minimum remaining energy in the
last schedule. If both conditions are satisfied, it rebroadcasts the
request with recalculated current total energy consumption Ej

and the minimum remaining energyEmin, and remembers its
predecessorSi. If several such messages are received, the one
that can minimize the total energy cost is chosen. This iteration
terminates when the request arrives at the redundant sensorSr.
The process continues until the best schedule is found.
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S0 (N0)Sr (N11)

S2 (N5)

S3 (N8)

S4 (N10)

S5 (N9)
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Fig. 2. Primary Search Area

To make the above method work, one issue has to be ad-
dressed: how can a node determine that it has received the mes-
sage that can minimize the total energy consumption before gen-
erating and broadcasting its own message. There are two simple
solutions. In the first one, if a node finds the newly received mes-
sage that can reduceE, it immediately broadcasts an updated
version. This method may cause a high message overhead since
each node may broadcast several times. In the second method,
each node waits for a period of time before broadcasting the
message. However, it is hard to decide the time threshold: not
enough information is received when it is low, while the overall
delay may be very long when it is high.

In order to avoid high message overhead and long delay, the
geographic information can be utilized to ensure that nodescan
make correct decisions before broadcasting with a high prob-
ability. The solution needs two data structures: theprimary
search area and thewaiting list.

B.1 Primary Search Area and Waiting List

The primary search area is determined based on the loca-
tion of the target destinationS0 and the redundant sensorSr.
It should encompass all potential cascading nodes with a high
probability, and only nodes in the primary search area are con-
sidered as candidates for cascading nodes. Thewaiting list of
Si includes all the neighbors ofSi which are within the primary
search area and are further away fromSr thanSi. A node only
broadcasts the message after receiving the messages from all
nodes in its waiting list.

The primary search area can be in any shape. In our imple-
mentation, we use rectangular primary search area. As shown
in Fig. 2, the redundant sensor and the event location are the
centers of parallel sidesAB andCD of the rectangular primary
search area. To encompass all the potential cascading nodes, we
can simply setAB andCD to the width/length of the whole net-
work. However, this will incur high message overhead because
many nodes are involved and the schedule calculation time may
be long.

On the other hand, if the area is set too small, many candidate
cascading nodes may be excluded and thus we cannot get a good
relocation schedule. Therefore, to find an adequate size forthe
primary search area is very important, which may be a dominat-
ing factor affecting the relocation scheduling calculation time.



We propose to choose the size based on the relocation time re-
quirement. The size can be set large if the time requirement is
not tight; otherwise we start with a small value. If no qualified
schedule is found within this small search area, we can increase
the size and initiate another relocation schedule finding process.

B.2 Message Piggybacking and Processing

Due to the limitation of the communication range, the poten-
tial successor of a node may not be its communication neighbor.
Therefore, a node piggybacks information which may be needed
by nodes further away. To do this, each node uses awaiting list
message queue to cache its received messages from nodes in its
wait list. One such message should at least include the follow-
ing information about the message originator node:Sorg, Torg,
torg, Eorg andEmin. That is, each message needs at least 10
bytes if each field is represented by two bytes. However, the
memory of a sensor node is limited (e.g., the Mica2 mote only
has a4 KB data memory [4]). Therefore, it is not feasible to
cache all the received messages when the number of messages
is large. On the other hand, it may not broadcast those messages
immediately after receiving them because that will cause high
message complexity and then more collisions. Also, the pro-
cessing cost will be increased since each message may need to
be processed individually.

To be more effective and efficient, in our implementation,
the received messages are processed in a batch when the queue
reaches half full or when messages from all nodes in the waiting
list are received. The processed messages are then broadcast in
a batch. After all the requested messages are received and pro-
cessed, the node can update itsE, Emin andt, and generate its
own message to broadcast.

B.3 Message Broadcast

When nodes are close to each other, some broadcasts may
not be necessary. For example, in Fig. 2,S1 is in the waiting
lists ofS2 andS3. S2 andS3 both will rebroadcast the message
originated fromS1, and thereforeS4 may hear two copies of the
same messages. A node can simply drop the redundant copy,
however, receiving a message consumes energy. In addition,
sending more messages may increase the collision rate.

Unreliable message delivery is another issue we have to deal
with. Currently, the default TinyOS [6] implementation uses a
unreliable CSMA-like media access control protocol with a ran-
dom backoff. In our algorithm, a node should receive messages
from all nodes in its waiting list. Although we can add an ac-
knowledgment scheme to achieve reliable delivery, the message
overhead will be significantly increased if ACK is used for each
message.

In our system, one message may be broadcast multiple times.
In order to reduce the unnecessary rebroadcasts and the message
redundancy, we adopt the distance-based scheme which is used
to address the broadcast storm problem [13]. However, there
is some difference between our solution and that in [13] since
a node drops the messages which contain no information about
the nodes in its waiting list in our scheme.

When a nodeSi hears a broadcast message from nodeSj ,
it calculates the distancedij . Since each node may receive a
message for multiple times, it records the distance (dmin) to
the nearest node from which the same message is heard. As
in Fig. 2, if S4 hears two copies of the same message from
S2 andS3, its recordeddmin is min{d24, d34}. A node com-
paresdmin with a predefined distance thresholdD to decide
whether to rebroadcast the message. It rebroadcasts the mes-
sage ifdmin > D; otherwise, it will not. To ensure receiving all
the requested messages, each node has a message waiting timer.
When the timer expires, it sends inquiries to those nodes whose
messages it is waiting for.

IV. PROTOTYPE AND IMPLEMENTATION

Fig. 3 shows the testbed of our mobile sensor network, which
consists of4 mobile sensor nodes and11 static sensor nodes
(Mica2 motes [4]). The static sensor nodes can be used to relay
data between mobile nodes when they are far away from each
other. Although the wireless radio is sufficient for the motes to
communicate with each other in a small indoor field, it is not
enough for long-range (> 500 ft) communication in an outdoor
environment. A laptop with an attached mote can communicate
with the sensor nodes through wireless communication, which
mainly aims at debugging/visualizing. In our testbed, the static
nodes also intentionally relay the heard messages to the laptop
to aid debugging/visualizing. The right side of Fig. 3 showsan
abstract view of the mobile sensor network on the laptop.

As shown in Fig. 4, the system is organized into a layered
architecture. The mote controls the robot via serial commands
through its UART interface. Next, we present the hardware and
software design, and the details of this prototype.

UART interface

Neighbor 

Discovery
 Dynamic 

Configuration 

Relocation Schedule 

Calculation

Robot 

Control

MICA2   Mote

Robot

TinyOS Application

TinyOS

Fig. 4. Overview of mobile sensor relocation system

A. The Hardware

In this part, we briefly describe the Mica2 mote, and the hard-
ware architecture of the mobile node.

Mica2 is the third generation mote built for wireless sensor
networks [4]. It is equipped with a 4Mhz Atmel microprocessor
with 4 KB of RAM and 128 KB of code space, a 868/916 MHz
RFM radio, and 512KB of flash EEPROM. The outdoor radio
range is500 ft. A 51-pin connector accommodates a wide vari-
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Fig. 3. The prototype which consists of mobile sensors and static sensors

ety of external peripherals by exposing a number of input lines
as well as popular serial interface.

Each mobile node comprises a Mica2 mote and a robot plat-
form, as shown in Fig. 5. All computation related to applications
is done by the motes. The communication between different
nodes is via the RFM radio of motes, which uses a CSMA-like
media access control protocol with random backoff [6], [4].The
robot platform has two 6” plastic bases. The lower base con-
sists of the motor, odometry encoders, wheels, line detectors,
and batteries. On the upper base, the Mica2 mote is wired to
a MC9S12DP256 microcontroller [19], which features a 16-bit
HCS12 CPU with a256 KB Flash EEPROM,4 KB EEPROM
and12 KB RAM. Via its UART interface, the mote sends serial
commands to control the robot. Any feedback from the robot
goes through the UART interface to reach the mote. This mote-
robot API will be discussed in Section IV-B.

3V working voltage for the mote is supplied via a free-
hanging9V battery pack which also provides power for the
robot. The effective lifetime of a sensor node is determinedby
the power supply. That is, the power consumption of each node
tends to be dominated by the cost of transmitting and receiving
messages when it is still, and by the cost of moving when it is
moving.

Fig. 5. Mobile Node

B. The Software

The software architecture has four major components: 1) the
low-level program in the microcontroller on the robot; 2) the
robot control program on the mote; 3) the relocation application
program on the mote; and 4) the program running on the base
station (laptop) for debugging/visualization. In the following,

we will introduce them in detail.

B.1 The robot program

The robot program consists of a main loop which deals with
sending and receiving messages, handling the navigation queue,
and calling for odometry updates. Hardware-specific interface
is handled through memory-mapped I/O and interrupts. Current
code size is nearly18 KB, which is too large for the12 KB RAM
or 4 KB EEPROM and can only be programmed into the flash
memory.

B.2 The robot control program

The robot control program is an added TinyOS component,
written in nesC [5], which sends and receives messages to/from
the robot via the UART interface. TinyOS is an event-driven
operating system specifically designed for the mote platform.
TinyOS provides a set of essential components such as scheduler
and communication protocols, which provide low-level support
for application modules. Packets in the current generationof
TinyOS are in a fixed size, by default, 36 bytes with a 29-byte
payload.

nesC [5], [21] is a C-like language that enables users to define
components and the relations among them. A nesC application
consists of one or more components linked together to form an
executable image [21]. A component provides and usesinter-
faces, which are the only point of access to the component and
are bi-directional. There are two types of components in nesC:
modules and configurations. Modules provide application code,
implementing one or more interfaces. Configurations are used to
assemble other components together, connecting interfaces used
by components to interfaces provided by others [21].

The relocation application uses this robot control component
to make the robot move in a controlled manner. Currently21
serial commands are available to be sent from the mote to the
microcontroller on the robot such as “turn a angle” and “go to
a point”. There are5 feedback instructions that the robot can
provide to the mote. With these serial commends and feedback
instructions, the mote can control the motion of the robot, check
its status and retrieve parametric values. Upon receiving ames-
sage, an user-defined event will be signaled and proper process-
ing will then be performed on the mote.



B.3 The sensor relocation algorithm

The primary goal of our work is to relocate a mobile sensor
node to a target destination in a timely and energy-efficientway.
In the last section, we presented the relocation algorithm.To im-
plement this algorithm, we need two other functions: neighbor
discovery, network reconfiguration. Next, we present the details
of these three modules.

Neighbor Discovery: After deployment, the nodes discover
and notify its neighbors periodically by locally broadcasting
beacon messages. In the beacon message, a sender sends its
ID, its location and its neighbor list. This local information
helps each node to build a neighborhood table and acquire cer-
tain knowledge of the network topology, which helps select the
waiting list.

Network Reconfiguration: In this phase, we can configure
the network by dynamic reconfiguration, which is conducted by
adjusting the values of some control parameters. This capability
facilitates re-tasking for application requirement change, and it
simplifies system tuning and debugging. For example, it usu-
ally takes at least30 seconds to recollect and reprogram one
mote manually. With dynamic reconfiguration, the time can be
reduced to several seconds.

Dynamic reconfiguration is supported with the help of beacon
messages, which piggyback the new parametric values. Upon
receiving the messages, the nodes adopt the new values. Such
a piggybacking strategy obviates the need of another special-
ized type of messages to re-parameterize the nodes and thus
saves energy. However, during the relocation schedule calcu-
lating process, the reconfiguration is forbidden. An example of
the reconfigurable parameters is the recovery delay constraint.
Changing a node’ recovery delay constraint will impose a direct
impact on the relocation schedule calculation for a node failure,
because it determines whether a path can be chosen according
to the algorithm stated in Section III-B.

Sensor relocation: The sensor relocation application archi-
tecture described in Fig. 4 is implemented on top of TinyOS.
Fig. 6 shows the component architecture of the relocation appli-
cation in nesC. The whole program occupies21450-byte code
space and2104-byte data memory. RobotCommM is respon-
sible for robot motion control. MoveM is the main module,
which uses the RobotCommM and some TinyOS-provided com-
ponents to perform Neighbor Discovery, Dynamic Reconfigura-
tion and Relocation Schedule Calculation.

There may be race conditions between different software
modules if they share some resources or try to transmit pack-
ets simultaneously. Although application-level methods such as
synchronization or packet scheduling can be used to avoid this,
in our implementation, we usetasks andatomic statements [21]
provided by TinyOS to do concurrency control.Tasks are used
to perform general-purpose background processing, which are
put into a task queue to execute one by one. Theatomic state-
ments that are braced by the keywordatomic will be executed
without preemption. We believe that our solution is more conve-
nient and efficient than the application-level methods. Theim-
plementation of our sensor relocation application on the Mica2

motes has the following advantages:
• Energy Efficiency: By balancing the total energy cost and
the energy cost of individual node, we avoid depleting a single
node in a short time and prolong the network lifetime.
• Simplicity : Because of the hardware limitation (4K data
memory and 128K code memory), the application must be
small, simple and effective. In our implementation, the code size
is only21450 bytes and the data memory is only2104 bytes.
• Flexibility : Dynamic reconfiguration is achieved by adjust-
ing values of some parameters (e.g., recovery time constraint),
which provides fast performance tuning and debugging.
• Contention Reduction: A distance-based method is used to
reduce the unnecessary rebroadcasts, and hence reduces thecon-
tention for media access between different nodes. At the node
level, we use concurrency control methods provided by TinyOS
to avoid the possible race conditions.

TimeC LedsC

UARTM

MoveM

RobotCommMenericComm

Relocation Schedule Calculation

Neighbor Discovery

Dynamic Configuration

Robot Control

TinyOS Provided 

Added Component

Fig. 6. The structure of the sensor relocation application in nesC

B.4 Programs on the base station

In our testbed (as shown in Fig. 3), we use a laptop connected
with a mote as the base station for debugging/visualizing. The
mote attached to the laptop passively listens to messages be-
ing transmitted between mobile nodes or relayed from the static
nodes, then delivers them to the laptop; the laptop program pro-
cesses these messages and displays the results to the user. Since
no node in our testbed is equipped with any localization devices,
this program is also responsible for assigning the initial posi-
tions to the mobile nodes. During movement, the mobile nodes
can reposition themselves autonomously by the odometry up-
date function of the robot program. Additionally, the base sta-
tion mimics the “failed” node which initiates a relocation sched-
ule calculation process by injecting a request to the network.

V. EXPERIMENTAL EVALUATIONS

We setup a testbed to evaluate the performance of our dis-
tributed sensor relocation scheme. In the testbed,4 mobile sen-
sor nodes are randomly deployed in a50ft× 35ft flat floor in a
research laboratory. A node is randomly chosen as the redundant
node. A laptop connected with a mote (the base station) initiates
a node relocation process by injecting a request to the network.
All four mobile nodes are in the primary search area, i.e., they
are involved in the optimal cascaded schedule which may need
several rounds. Each round returns a schedule, based on which
new requests are generated to search for better schedules until
the best one is found.

We run multiple experiments to measure the performance of



the algorithm in terms of themoving distance, energy consump-
tion, recovery time andmessage complexity. For each experi-
ment, a random topology is generated, and the mobile nodes are
positioned based on this topology. We compare two schemes:
Cascaded movement andDirect movement. For better observa-
tion of the effectiveness of cascaded movement, we relaxed the
recovery delay constraint.

Fig. 7 compares the moving distance of the cascaded move-
ment approach and the direct movement approach. Besides the
total moving distance, we also use the average moving distance,
the minimum moving distance, and the maximum moving dis-
tance among the nodes participating in cascaded movement to
measure the performance of the cascaded movement approach.
As shown in the figure, although the total moving distance of
the cascaded movement approach is slightly longer than the di-
rect movement approach, it has a much smaller average moving
distance, and hence its mobile nodes can balance their power
consumption. Also, the maximum moving distance in cascaded
movement is much lower than the moving distance of direct
movement, and hence cascaded movement can have a much
shorter relocation time.
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Fig. 7. Comparison of the moving distance in Cascaded Movement and Direct
Movement

Fig. 8 compares the energy cost between cascaded move-
ment and direct movement. Here, energy is represented by the
distance that the sensor can move with this energy, i.e. one en-
ergy unit means that the node can travel one ft with this energy.
For easy comparison, the initial energy of each node is set to
100 units in each experiment. As shown in the figure, the to-
tal energy cost of cascaded movement is slightly higher thanthe
direct movement. However, the minimum remaining energy in
cascaded movement is much higher than that of direct move-
ment, and hence, the cascaded movement approach can balance
the energy cost and increase the network lifetime.

For cascaded movement, the total time for relocation includes
the relocation schedule calculation time and the physical mov-
ing time which is equal to the maximum moving time of the
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Fig. 8. Comparison of energy cost in Cascaded Movement and Direct Move-
ment

cascading nodes if they start moving at the same time. For di-
rect movement, the total time is the physical moving time since
the message routing time is pretty short. As shown in Fig. 9,
the cascaded movement approach takes much shorter time to do
the relocation compared to the direct movement approach. Fig.
10 (a) shows the schedule calculation time and the average time
needed for one round in the relocation schedule calculation. Fig.
10 (b) shows the percentage of schedule calculation time andthe
moving time in cascaded movement. As can be seen, the calcu-
lation time is pretty short compared to the physical moving time.
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Fig. 9. Comparison of total time cost in cascaded movement and direct move-
ment

Fig. 11 shows the message complexity of the cascaded move-
ment approach. As shown in Fig. 11(a), different topologies
may require3 to 6 rounds to find the best relocation schedule,
and each round needs approximately 20 messages for all topolo-
gies. From Fig. 11 (b), we can see it generally needs more
rounds to calculate the relocation schedule if more nodes are
involved in the cascading path.
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Fig. 10. Relocation time in cascaded movement
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Fig. 11. The message complexity in cascaded movement

VI. RELATED WORK

Many research efforts have been made on mobile sensor net-
work. Howardet al. [9] proposed algorithms to incremen-
tally deploy sensor nodes one-at-a-time into an unknown en-
vironment using information gathered by previously deployed
nodes. Based on the notion of potential fields, deployment
strategies for mobile sensors are presented in [7], [16], [15]
to maximize the coverage with certain constraints. Zou and
Chakrabarty [27] utilized the virtual force to enhance the cover-
age with a given number of sensor nodes after an initial random
placement. Three mobility-assisted sensor deployment proto-
cols [24], called VOR, VEC and Minimax, were proposed to in-
crease the coverage by making mobile sensor nodes move from
densely deployed areas to sparse areas. To balance sensor cost
and sensor coverage, a bidding protocol was presented in [23]
for mobile sensor deployment in sensor networks consistingof
mobile and static sensor nodes. However, all these approaches
did not consider the response time requirements in the sensor re-
location problem. Mesh-based relocation algorithms in [11] can
guarantee the latency, but some nodes may be penalized when
moving too often. In [22], Wanget al. presented a sensor relo-
cation algorithm based on cascaded movement, however, many

real implementation issues are not addressed.
In order to demonstrate mobile sensors really work, some re-

searchers started to develop prototypes. For example, Robomote
[18] can provide a sequence of fundamental functionality such
as sensing and communication. Howard et al. [8] used a team
of mobile robots coupled with acoustic sensors and 802.11b
WiFi to form a sensor network in a spacial indoor environment.
Hence, a heterogeneous large-scale sensor network, which con-
sists of cheap unattended ground sensors and relatively expen-
sive mobile sensor nodes, can be envisioned to solve complex
tasks [3].

VII. C ONCLUSIONS

In this paper, we presented our mobile sensor design where
the mobile sensor node is based on the popular sensor node plat-
form Mica2 mote [4] and mobile robots are built with commer-
cial off-the-shelf components. We used a sensor relocationap-
plication to demonstrate the feasibility of the design. Although
the sensor relocation algorithm is based on our early work, we
addressed many issues when implementing this algorithm dis-
tributedly in the resource constrained sensor motes. Experimen-
tal results show that our relocation algorithm can reduce the sen-



sor relocation time. Although the total moving distance may
increase a little bit, each mobile node moves much less to bal-
ance the energy consumption and hence increase the network
lifetime.
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