
Compromise-resilient anti-jamming communication in wireless
sensor networks

Xuan Jiang • Wenhui Hu • Sencun Zhu •

Guohong Cao

Published online: 18 June 2011

� Springer Science+Business Media, LLC 2011

Abstract Jamming is a kind of Denial-of-Service attack

in which an adversary purposefully emits radio frequency

signals to corrupt the wireless transmissions among normal

nodes. Although some research has been conducted on

countering jamming attacks, few works consider jamming

attacks launched by insiders, where an attacker first com-

promises some legitimate sensor nodes to acquire the

common cryptographic information of the sensor network

and then jams the network through those compromised

nodes. In this paper, we address the insider jamming

problem in wireless sensor networks. In our proposed

solutions, the physical communication channel of a sensor

network is determined by the group key shared by all the

sensor nodes. When insider jamming happens, the network

will generate a new group key to be shared only by the non-

compromised nodes. After that, the insider jammers are

revoked and will not be able to predict the future com-

munication channels used by the non-compromised nodes.

Specifically, we propose two compromise-resilient anti-

jamming schemes: the split-pairing scheme which deals

with a single insider jammer, and the key-tree-based

scheme which copes with multiple colluding insider jam-

mers. We implement and evaluate the proposed solutions

using Mica2 Motes. Experimental results show that our

solutions have low recovery latency and low communica-

tion overhead, and hence they are suitable for resource

constrained sensor networks.

Keywords Compromise-resilient � Jamming �
Sensor networks

1 Introduction

Wireless communication is vulnerable to jamming-based

Denial-of-Service (DoS) attacks in which an attacker pur-

posefully launches signals to corrupt wireless communi-

cations. Wireless Sensor Networks (WSNs) are especially

susceptible to jamming attacks due to resource constraints

on computation, communication, and energy.

Jamming cannot be adequately addressed by common

security mechanisms such as confidentiality, authentica-

tion, and integrity, because jamming targets at the basic

transmission and reception capabilities of the physical

devices. Moreover, none of the cryptographic constructions

such as encryption/decryption can be directly adopted to

solve the problem. Thus, we have to seek new solutions to

deal with this severe attack.

Many existing countermeasures against jamming focus

on spread spectrum [20, 22] in which the sender and

receiver hop among channels or use different spreading

sequence to evade the jamming attack. However, to

successfully communicate under jamming attack, both

sender and receiver need to know the same hopping or

spreading sequence beforehand and keep it secret.

Although uncoordinated frequency hopping (UFHSS) and

direct spread spectrum (UDSSS) [19, 25, 26, 31] have

been proposed to enable key establishment between a

pair of nodes without a pre-shared secret under a jammer,

these approaches are typically not applicable to WSNs

since they are designed for one-to-one communication or

require sophisticated wireless interface to support direct

spread spectrum.

X. Jiang (&) � W. Hu � S. Zhu � G. Cao

Department of Computer Science and Engineering,

The Pennsylvania State University, University Park,

PA 16802, USA

e-mail: xjiang@cse.psu.edu

123

Wireless Netw (2011) 17:1513–1527

DOI 10.1007/s11276-011-0361-8

For broadcast communication, group-based schemes [4,

7, 8] have been proposed. The idea is to divide receivers

into multiple broadcast groups and different groups use

predefined different channels. A compromised receiver can

only jam the communication in the same group. Then, a

divide-and-conquer strategy is applied to remove malicious

receivers. However, these schemes require a large number

of available channels. Otherwise, the compromised nodes

could coordinate to jam all channels in a group.

For WSNs, Xu et al. proposed to use channel surfing

[35] to deal with a narrow-band and intermittent jammer.

Their basic idea is to let sensor nodes switch channels in a

way that the jammer cannot predict them. For example, all

nodes switch to a different channel C(n ? 1) = FK(C(n))

to evade jamming after jamming is detected, where K is a

group key shared by all nodes, F is a pseudorandom

function and C(n) is the original channel used before

jamming. However, this technique is limited to outsider

attacks and it does not work under node compromises

since an insider attacker knows the group key K and the

function F.

In this paper, we address the insider jamming problem in

WSNs. In our solution, the physical communication channel

is determined by the group key shared by all nodes. When

insider jamming happens, the network will generate a new

group key to be shared only by the non-compromised nodes.

After that, the insider jammers are revoked and will not be

able to predict future communication channels used by the

non-compromised nodes. To realize this idea, we address

the following research challenges: First, how can the non-

compromised nodes agree on a new group key in a fully

distributed way? Second, how do they distribute the new

group key under the presence of one or multiple jammers.

Specifically, we propose two compromise-resilient anti-

jamming schemes. The first scheme, called split-pairing,

deals with a single insider jammer. Due to the channel

switch delay, the insider jammer cannot jam two channels at

the same time. By actively splitting non-compromised

nodes into two or multiple groups using multiple channels,

nodes communicating in jamming-free channels can first

reestablish a new common group key, and then propagate

this key to other non-compromised nodes. We further pro-

pose a key-tree-based scheme to cope with multiple col-

luding insider jammers. Our goal is to construct a logical

key tree in a bottom-up manner under jamming so that all

jammed nodes can finally share the root key to derive a

common secret channel. Then, they can propagate the

shared key to other non-compromised nodes. We have

implemented and evaluated the proposed solutions using

Mica2 Motes. Experimental results show that our solutions

have low recovery latency and low communication over-

head, and hence they are suitable for resource constrained

sensor networks.

The rest of this paper is organized as follows. Section 2

describes the system model and the design goal. The details

of our recovery schemes are presented in Sects. 3 and 4. In

Sect. 5, we present the performance evaluation results of

our proposed schemes. Section 6 presents related work and

Sect. 7 concludes the paper.

2 System model and design goal

2.1 Network model and assumptions

We assume each node in the network has multiple channels

and can switch to different channels. For example, the

Mica2 mote has 32 effective channels for radio transmis-

sion [6]. As our first step towards addressing the insider

jamming problem, in this paper, we focus on a one-hop

network in which each node can directly communicate with

all other nodes. This model has been widely used and

studied in recent works [12, 19, 25], 26, 28, 36].

For security purpose, we assume every pair of nodes

share a pairwise key. For a static network, keying materials

could be stored or hard-coded in non-volatile memory such

as Flash memory. For a dynamic network, the issue of

establishing pairwise keys has been well studied in wireless

sensor networks. Many pairwise key establishment

schemes [3, 14, 41] allow two nodes to establish a pairwise

key on the fly as long as they know each other’s id. In our

work, we choose the Blundo scheme [1] since it provides

clear security guarantee and simplifies our presentation.

In the Blundo scheme, a bivariate symmetric polynomial

f(x, y) with degree of t is chosen in advance and f(i, y) is

preloaded on sensor i. The pairwise key with node j on

i can be generated by evaluating the function f(i, j). The

scheme provides unconditional secrecy if no more than

t nodes collude. For the storage cost, a node needs to store a

univariate polynomial represented by t ? 1 coefficients.

The size of a coefficient is the same as that of a symmetric

key. For example, if a sensor network wants to tolerate the

compromises of tens of nodes, it needs to store tens of

coefficients. The size of a typical key is 8 or 16 bytes [10];

hence, each node needs to store hundreds of bytes of

keying material. This storage overhead is affordable for

low-end sensor motes with 4 KB RAM.

To simplify our presentation, we assume that legitimate

nodes have detected and identified the jammer. Jammer

localization and identification for WSNs are still open

issues, although recently some efforts have been made

towards addressing them, for example, RF fingerprinting

for sensor nodes [5], jammer localization [27] and soft-

ware-based attestation [16, 23, 24, 38]. Nevertheless, the

focus of this paper is on recovering from insider jamming

attacks.

1514 Wireless Netw (2011) 17:1513–1527

123

2.2 Attacker model

We assume that the attacker can compromise a few nodes

to obtain confidential information such as group key which

is used to derive the channel used by all the sensor nodes.

We also assume that the attacker launches jamming

through the compromised sensors. That is, the jammer has

the same physical capability in terms of power and fre-

quency band as the normal sensor. There are two reasons

for this assumption. First, it is obvious that if the jammer is

a high-power, broadband capable device, it is impossible to

construct a jamming-resilient sensor network with the low-

end sensors. Second, powerful jammers can be easily

detected by defenders since they violate the normal com-

munication rules. However, insider jamming is supposed to

be more stealthy. Nevertheless, we assume the compro-

mised sensors launch signals as strong as possible to

maximize the attacker’s damage.

In our attack model, the attacker has the following

parameters:

– Jamming Probability The attacker can jam up to

n channels with probability pi(1 B i B n) for channel i.

– Channel Switch Latency (tl) The attacker needs time tl
(tl [0) to switch from one channel to another. From

our experiment in Sect. 5, the typical latency is 34 ms

for Mica2 mote. For MicaZ mote [33], tl is 132 us. For

802.11 WiFi [15], the measurement result of tl for the

Atheros chipset is 7.6 ms.

– Sensing and Jamming Duration We consider two types

of jammers: active and reactive. For active jammers,

attackers launch jamming signal immediately without

sensing. We denote the jamming duration as tj. For

reactive attackers, attackers sense the traffic before

jamming. Active attackers do not sense, so they may

jam some channels that have no traffic. As such, active

attacks have shorter response time but are not energy

efficient; on the contrary, reactive attacks have longer

response time but are more energy efficient.

2.3 Design goal

Our goal is to design security mechanisms to minimize the

damages caused by the insider jammer(s). More specifically,

we consider a scenario where normal nodes could be com-

promised and deceived as malicious insider jammers. The

attacker could use any cryptographic information known by

the normal nodes to facilitate the jamming attack. For

example, the jammer could always predict the next channel

used for communication and launch jamming signals to

block the eligible network traffic. In addition, we consider a

more complicated case in which multiple nodes launch

jamming attacks in a coordinated way. The goal of our

proposed security mechanisms is to construct and propagate

a new group key to all non-compromised nodes under the

presence of one or even multiple jammers so that the new

key can be used to establish a keyed secret channel which

cannot be predicted by the insider attacks, thus excluding

them from the network. Note that in the case of multiple

compromised nodes, a compromised node may pariticipate

in the network benignly and never jam. As a result it may

still know the new group key after rekeying. While we

acknowledge this is a valid arguement, our mechanism for

rekeying under multi-jammers still bears its value on its

own. On one hand, in any group key management protocols

[17, 32, 39, 40], a default assumption is that somehow the ids

of the compromised nodes are already known. The problem

of how to detect compromised nodes was not addressed and

considered as a separate issue. This type of stealthy attack is

in principle valid to any group rekeying mechanisms. In our

setting, we might not rely on a jammer detection algorithm

to detect any compromised nodes which do not jam at all.

But we can deploy a node compromise detection mecha-

nism instead. For example, software attestation techniques

[16, 23, 38] have been shown to be very powerful to detect

node compromises by detecting the change of code in a

sensor node. Second, even if compromised nodes are not

detected, our rekeying mechanism at least will not introduce

additional security problems into the network.

Next, we propose two compromise-resilient anti-jam-

ming schemes: a split-pairing scheme to deal with single

insider jammer and a tree-based scheme to handle multiple

colluding attackers.

3 The split-pairing scheme

The basic idea of our scheme is to split the jammed nodes

into two groups, each of which works on a different channel.

At any given time the attacker can jam only one channel, or

cannot jam any channel when it is switching channel. Since

there is only one jammer, there must be a group which is free

of jamming at any time, and nodes in this group can prop-

agate a new group key. The scheme consists of three phases.

Phase I deals with how to split the network into two groups

and assign communication channels to them. Then, we

design a protocol for intra-group key propagation in phase II

to ensure that all nodes in one of the two groups will share

the new key at the end of this phase. In phase III, nodes in

two groups are paired to propagate the new key from one

group to the other.

3.1 Phase I: channel splitting

Suppose all nodes work on channel C0 originally and

r channels available to switch. Starting from time t0, one

Wireless Netw (2011) 17:1513–1527 1515

123

node is compromised and it starts to jam channel C0. After

the jammer has been detected and identified, all N non-

compromised nodes will be aware of it. They will switch to

new channels in a distributed way. Without loss of gener-

ality, let us denote their ids as 1; . . .;N: In this phase, nodes

with lower ids f1; . . .; bN
2
cg switch to channel C1 = H(C0|0),

and nodes with higher ids fbN
2
c þ 1; . . .;Ng switch to

channel C2 = H(C0|1), where H is a secure hash function

preloaded in the sensor nodes and maps to one of r channels.

The channel switching and splitting process is illustrated

in Fig. 1(a, b). When node A is identified as a compromised

node, nodes with lower ids, i.e., nodes 1, 2 and 3, switch to

channel C1 = H(C0|0) and nodes in higher ids, i.e., nodes

4, 5, 6 and 7, switch to channel C2 = H(C0|1).

3.2 Phase II: jamming and key propagation

within a group

Once channel splitting finishes, the node with the smallest

id in each group acts as the group leader to generate a new

group key, which is then propagated within each group.

That is, node 1 is the group leader of the first group, and

node bN
2
c þ 1 is the group leader of the second group. Then,

the new group key K is generated based on the pairwise

key K1;bN
2
cþ1 shared between two leaders by applying

K ¼ FðK
1;bN

2
cþ1
Þð0Þ; where F is a pseudorandom function.

The desirable advantage is that the new group key is

generated without any communication and thus the jammer

cannot interfere it. Since the key K1;bN2cþ1 is unknown to the

attacker, it cannot predict the new group key although the

pseudorandom function F is publicly known.

Once the group leaders have generated the same new

key, they will only need to propagate the new key to all

their group members. Clearly, the new key has to be

encrypted to preclude the compromised attacker from

eavesdropping. To propagate K, the simple solution is to

let the group leader unicast the key to each group member.

To save communication cost, we use reliable broadcast.

Specifically, the group leader broadcasts the key to all

group members and gets the acknowledgements (acks)

from each of them. The group leader will retry if any acks

are missing.

Specifically, in the broadcast message M1, the new key

K is encrypted by different pairwise keys shared between

the leader and each member. For group 1, node 1 broad-

casts M1 and starts a timer

M1 ¼ MappingjjEK1;2
ðT j2jKÞjj. . .jjEK

1;bN
2
c

Tj N

2

� �
jK

� �
:

where T is the timestamp to prevent replay attacks. After

successfully receiving and decrypting M1, node i sends

back a confirmation message to the group leader 1 or bN
2
c þ

1: For group 1, node i sends back

M2 ¼ EK1;i
ðT jijKÞjji:

If any confirmations are missing due to jamming or colli-

sion, a new key propagation message M1 is reconstructed

and sent out after timeout. Only unconfirmed nodes are

required to send back confirmations to reduce the traffic

and collision. This procedure continues until all confir-

mations are received by the leader.

In TinyOS 2.0.1, the MAC layer frame structure has a

data payload of 28 bytes. Given a typical key size of

8 bytes [10], one frame can include at most 3 encryptions

of a group key. Also, node ID is 1 byte and encryption id is

1byte. For Mica2 with transmission rate of 19.2 Kbps, the

transmission time for M1 with three encryptions (i.e., the

subgroup size is 4 counting the leader) is s1 �
ð8 bytes�3Þþ1 bytesÞ

19:2 Kbps
¼ 10:42 ms and for M2 is s2 � ð8þ1Þ bytes

19:2 Kbps
¼

3:75 ms; the one-round communication time will be

s0 ¼ s1 þ 3 � s2 ¼ 21:67 ms. It is worth noting that the one-

round time s0 \ tl, where tl = 34 ms for Mica2. That is,

for a group of size 4, a keying message can be transmitted

successfully before the jammer can switch to another

channel which includes the following time: switching to

another channel, jamming a minimal packet, and returning.

If the group size is larger than 4, we have to embed mul-

tiple encryptions into two or more broadcast messages.

Suppose that the key propagation time in one group with-

out jamming is Tkr. Given the number of nodes in each

group and the packet loss rate, we can compute the

expected message transmission round E[Y] based on [30].

Hence, Tkr = s0 E[Y].

Unfortunately, in practice the key propagation messages

M1 and M2 can be corrupted by jamming and the actual key

propagation needs more time. In order to estimate this time,

we consider the optimal jamming strategies in which the

attacker can maximize the total key propagation time for

this phase. Since the hash function H and the original

channel C0 are publicly known, the attacker knows

C

1 0

0

02C =H(C |1)

C =H(C |0)

Node 1-3

Node 4-7

t

A

7
6

4

2 1

5

3

Fig. 1 a Network topology, b the illustration of channel switch for

key reestablishment

1516 Wireless Netw (2011) 17:1513–1527

123

channels C1 and C2 by computing the same hash values.

However, the attacker has only one wireless interface and

thus at any given time it can jam only one channel or

neither of them when it is switching channel. This means

that at least one of two groups are free of jamming at any

time, and this group can execute the above key propagation

protocol. In other words, the attacker cannot simulta-

neously prevent the key reestablishment for both groups

and the best it can do is to prolong the key propagation

time of phase II.

Theorem 3.1 The optimal jamming strategy for a single

jammer is to actively jam two channels with an equal

probability.

Proof We denote Tj as the overall jamming duration in

phase II. The total key propagation time for Phase II is T. In

our system model, pi is the probability for the attacker to

launch jamming on channel i. For group i, the time it is free

of jamming is Ti = T - Tjpi. In order to maximize the key

propagation time, an optimal attacker would minimize the

maximum free-of-jamming time for all groups. Here we

consider the case of two groups i = 1, 2. We formalize the

optimization problem as follows:

min
p1;p2

max
p1;p2

ðT � Tjp1; T � Tjp2Þ
s:t:p1 þ p2 ¼ 1

p1;2� 0

ð1Þ

If T - Tjp1 C T - Tjp2, we have p1 B p2. Then, the

problem is simplified to:

min
p1 � 0;p1 � p2;p1þp2¼1

ðT � Tjp1Þ ð2Þ

The solution is p1 = p2 = 0.5. Similarly, we have the same

result when T - Tjp2 C T - Tjp1. h

To estimate the key propagation time T in one group, we

consider a typical optimal case for the attacker where the

attacker alternates between two channels and jams each

channel for a period of tj. If it starts with group 1, group 2

will be able to complete key propagation ahead of group one

or at the same time as group one. We consider the worst

case in which each jam leads to a retransmission.

The number of retransmissions for one group due to jamming

is T
2ðtjþtlÞ and the time for retransmission is Tjr � T

2ðtjþtlÞ s0.

The finish time T is

T � Tkr þ Tjr ¼
2ðtj þ tlÞ

2ðtj þ tlÞ � s0

Tkr: ð3Þ

3.3 Phase III: Key propagation between groups

After one group finishes the key propagation, this group

excludes the attacker by the keyed secret channel. It is

possible that the attacker chooses to jam group 2 all the

way so that few nodes in group 2 can obtain the new group

key. If so, nodes in group 1 can propagate the group key to

nodes in group 2 by pairing one node in group 1 with

another node in group 2. For simplicity, we pair the two

nodes with the lowest ids in two groups, the second lowest

and so on. If N is odd, group 2 will have one more node

left. We pair it to node 1 since the two lowest id nodes,

1 and bN
2
c þ 1; are group leaders they do not need to

communicate in this phase. Therefore, node 1 is actually

only responsible for that extra node. That is better than

pairing this extra node to any other node in group 1, which

is already paired. In Fig. 1(a), we pair node 1, 4; 2, 5; 3, 6

and 1, 7, as shown in Fig. 2.

In order to safely propagate the new group key from one

group to the other, paired parties in different groups

communicate in a keyed secret channel based on their

pairwise key. Suppose node ið1� i�bN
2
cÞ and jðbN

2
c þ

1� j�NÞ are paired and they share a pairwise key Kij.

Then, they switch to channel Cij = H(Kij|0). In some rare

cases, two or more pairs are hashed to the same channel

due to the limited channel resource. We use random back-

off mechanism to avoid collision.

After channel switching, all nodes that have received the

new group key switch to the reception mode and wait for a

request from their paired parties. For the key propagation,

since phase II can guarantee that nodes in one group have

correctly received the new group key, two cases may occur

for the pair i and j. First both i and j have correctly received

the new group key. Then, i and j do not communicate to

save energy and avoid unnecessary traffic and collision.

Second, either i or j has received the new group key.

Without loss of generality, we assume that i has received

the new key but j has not. Then, j initiates key reestab-

lishment by sending a message M1 to node i:

Fig. 2 Pairing for key propagation between groups

Wireless Netw (2011) 17:1513–1527 1517

123

M1 ¼ T jjjjjMACKij
ðTjjÞ:

where T is a timestamp and MAC is a message

authentication algorithm. Node i replies to j with

message M2:

M2 ¼ EKij
ðTjijKÞ:

node j decrypts M2 to obtain K. Note that M2 does not

include a separate MAC because the knowledge of T and

i serves as a way of (weak) authentication. At last, node

j returns a confirmation message M3 to i:

M3 ¼ EKij
ðTjjjKÞ:

Given a typical size of 4-byte MAC [10] all three messages

are short and the time for this exchange for the Mica2 mote

is s3\ 8 bytes�3
19:2 Kbps

¼ 10 ms; which can be completed within tl.

In other words, as long as the attacker is jamming a channel

other than Cij at the beginning of this phase, inter-group

communication of pair ij can complete without jamming.

To deal with some rare case that the attacker has chances to

jam the communication on pair ij, paired nodes maintain a

timer and the timeout can be set to s3 or a bit more to

tolerate lost time synchronization. Since nodes can detect

failed packet [36], if any exchange message is detected to

be failed, paired parties stop the exchange protocol and

wait for a timeout. When a timeout occurs, they switch to

another channel Cij
0 = H(Kij|1), set timer and retry until

one party can successfully propagate the new group key to

the other.

After all nodes obtain the new group key K, they can

start the legitimate communication on the secret channel

Cnew = H(K|0). The attacker may compromise another

node to obtain K. The above 3-phase procedure repeats to

reestablish a new key and restore the network. Note that a

revoked attacker may scan all the channels to discover

and jam the new channel like an outsider jammer. In this

case, all the nodes can switch to Cnew = H(K|1) (then

Cnew = H(K|2) if it happens again). No group rekeying is

necessary.

4 Tree-based scheme

In this section, we describe our tree-based recovery scheme

which can be used to deal with multiple colluding jammers.

4.1 Motivations and overview

We consider m malicious insiders where m C 2. Under a

single jammer, the split-pairing scheme derives a new

group key from a pairwise secret between two group

leaders. In the multiple-jammer case, the split-pairing

scheme can work successfully only if the network can be

split into at least m ? 1 groups to ensure that one or more

group(s) are free of jamming. Moreover, group leaders

need to agree on the same group key without communi-

cation or interaction. This can be achieved if each node is

preloaded with a m-variate symmetric polynomial [1].

However, each m-variate symmetric polynomial with a

degree of t C m has tþm
m

� �
monomials; thus, the storage

cost is tþm
m

� �
8 bytes. For the case of 6 jammers, we need to

split the network into at least 7 groups and each node

should be preloaded with a 6-variate symmetric polynomial

and the storage cost is at least 7 KB, which is quite high to

current sensors. In addition, the multiple jammers may

coordinate together to jam multiple channels simulta-

neously, which makes it more difficult to recover.

Because of the above concerns, we propose a tree-based

scheme to deal with multiple jammers. The tree-based

scheme is more adaptive and can tolerate multiple col-

luding attackers without increasing the storage overhead.

It borrows the idea from the logical key tree construction

[11, 21] as in Fig. 3. The root key located at level 0 is

shared by all nodes and the lowest leaves are nodes at level

l = 3. In our scheme, we use the binary key tree since

establishing pairwise keys does not generate extra storage

overhead and can be easily achieved by the Blundo

scheme. Our goal is to construct the logical key tree in a

bottom-up manner under jamming so that all jammed

nodes can finally share the root key to derive a common

secret channel. To achieve this, we first divide the network

into subgroups, each of which consists of two nodes.

Subgroup leaders generate subgroup keys and propagate

them to their members on secret channels determined by

the pairwise keys shared between the leaders and members.

Then, two sibling subgroups are merged into a larger

subgroup of four nodes and new keys are derived and

propagated within each subgroup again. With the progress

of this scheme, all nodes share a common key (root key)

and work on the same secret channel. Although our scheme

looks similar to the one proposed for wired networks [21],

there are two key differences. First, we do not assume the

Fig. 3 Key tree example

1518 Wireless Netw (2011) 17:1513–1527

123

existence of secure channels between each pair of nodes;

rather, we construct such channels based on pairwise keys

that can be efficiently established. Second, since no secure

channels exist between subgroups in advance, in our case

subgroup leaders must derive subgroup keys individually

without any communication or interaction.

4.2 The protocol

To better understand the tree-based scheme, we first show

an example for a network of 8 nodes as in Fig. 4. To

simplify our presentation, we define two terms.

– Subgroup Key A key shared by subgroup members. We

denote Ki-j as a subgroup key shared by nodes whose

ids are between i and j. For generality, we may use the

subgroup key notation Ki-(i?1) to denote a pairwise key

Ki,i?1.

– Channel Key A key used to derive a secret channel. If a

channel key is a pairwise key Kij, the channel between

node i and j is Cij = H(Kij|0). If the channel key is a

subgroup key Ki-j, the channel shared among nodes

i to j is Ci-j = H(Ki-j|0) with H being a secure hash

function for channel derivation.

Suppose all nodes are identified with ids 1; . . .;N (N = 8

in our example) as before and a set of channels

fC1;C2; . . .;Crg are available to switch. Figure 4 shows how

our tree-based scheme works and the details are as follows.

(1) Members 1 and 2 agree on secret channel C12 by

channel key K12.

Members 3 and 4 agree on secret channel C34 by

channel key K34.

Members 5 and 6 agree on secret channel C56 by

channel key K56.

Members 7 and 8 agree on secret channel C78 by

channel key K78.

(2) Members 1 and 3 derive subgroup key K1–4 =

FK1;3
(0) and distribute it to subgroup member 2 and

4, respectively.

Members 5 and 7 derive subgroup key K5–8 =

FK5;7
(0) and distribute it to subgroup member 6 and

8 respectively.

(3) Members 1,2,3,4 agree on secret channel C1–4 by

channel key K1–4.

Members 5,6,7,8 agree on secret channel C5–8 by

channel key K5–8.

(4) Members 1 and 5 derive subgroup key K1–8 =

FK1;5
(0) and distribute it to subgroup members 2,3,4

and 6,7,8 respectively.

(5) Members 1,2,3,4,5,6,7,8 agree on secret channel C1–8

by channel key K1–8.

The generation of all subgroup keys are offline (i.e.,

without interactions or communication between leaders).

The details of our tree-based scheme are shown in

Algorithm 1. The input includes all jammed nodes

1; . . .;N; the pairwise key Kij for i; j 2 f1; . . .;Ng and a set

of channels C ¼ fC1;C2; . . .;Crg. For round k, all nodes

switch to channel Cð2k �iþ1Þ�ð2k �ðiþ1ÞÞ by using channel key

Kð2k�iþ1Þ�ð2k �ðiþ1ÞÞ: Then, the node with id 2k � iþ 1 gener-

ates the subgroup key and broadcasts it to all members.

This procedure ends when all nodes receive the root key in

the logical key tree as the new group key. In case N = 2j

for some j ¼ 1; 2; . . .; some node may not have the channel

key and it does not need to propagate the key in that round.

For example, if N = 9, we need 3 rounds. Node 9 will not

do channel switching or key propagation in all 3 rounds.

It only generates root key at the last round by FK1;9
(0).

For key propagation, we apply a similar protocol as our

split-pairing scheme. For the kth round, node 2k � iþ 1; i ¼
0; 1. . .; bN

2kc initiates key reestablishment by broadcasting

message M1 to members 2k � iþ 2 to 2k � ðiþ 1Þ on channel

Cð2k�iþ1Þ�ð2k �ðiþ1ÞÞ:

M1 ¼ MappingjjEKð2k �iþ1Þ�ð2k �ðiþ1ÞÞ
ðT jKð2kþ1�iþ1Þ�ð2kþ1�ðiþ1ÞÞÞ:

Group members i 2 f2k � iþ 2; . . .; 2k � ðiþ 1Þg reply to

group leader 2k � iþ 1 with confirmation messageM2:

M2 ¼ EKð2k �iþ1Þ�ð2k �ðiþ1ÞÞ
ðTjijKð2kþ1�iþ1Þ�ð2kþ1�ðiþ1ÞÞÞ:

The group leader 2k � iþ 1 decrypts message M2 to

check which member has correctly received M1. If some

confirmation is not correctly received by the leader, the

leader retransmits the subgroup key.

Finally, the subgroup key needs to be replaced if some

member joins or leaves. We can apply the same approach

used in [21]. Since the number of nodes in a one-hop

K1-4=F(K13|0)

on C12=H(K12|0)

K1-4

on C34=H(K34|0)

K5-8=F(K57|0)

on C56=H(K56|0)

K5-8

on C78=H(K78|0)

1 2 3 4

K1-8=F(K15|0)

on C1-4=H(K1-4|0)

K1-8=F(K15|0)

on C5-8=H(K5-8|0)

1 2 3 4

Round 1

Round 2

5 6 7 8

5 6 7 8

Fig. 4 An example for our tree-based scheme

Wireless Netw (2011) 17:1513–1527 1519

123

network is not that large, based on the analysis of overhead

below, the cost of rerunning our scheme is still affordable.

In practice, we do not expect node compromise is a fre-

quent event. By simply rerunning the scheme, some com-

plicated problems such as tree rebalancing could be

avoided.

4.3 Performance analysis

– Computation Cost We consider two computations,

computing hashes H and executing pseudorandom

function F. For hashing, all nodes compute hash

function H for channel selection at most once in each

round. The scheme can finish in blog Nc round.

The overall computation cost for hashing is Chash =

O(Nlog N)CH where CH is the computation overhead

for hashing once. For the pseudorandom function,

approximately dN
2ke nodes involve the subgroup key

generation in the kth round. The overall computation

cost for F is CPRF ¼ Oð2dlog2 NeÞCF � OðNÞCF; where

CF is the computation cost for executing the pseudo-

random function once. Hence, the overall computation

cost is Chash ? CPRF = O(Nlog N)CH ? O(N)CF. Note

that in our schemes, we implement the pseudorandom

function with CBC MAC.

– Communication Cost We denote Cbroadcast as the cost of

the subgroup broadcast. In the tree-based scheme, the

number of broadcasts is approximately the number of

parent nodes in the logical key tree. Hence, the

communication cost is O(N)Cbroadcast.

– Storage Overhead A regular sensor only needs to store

its univariate polynomial with degree of t, i.e. (t ? 1)

coefficients. In addition, each node stores all ids in the

network. Even for a dense network with tens of sensors

within one-hop range, one byte is enough to represent

an id. Hence, the storage overhead is the same as the

split-pairing scheme.

Compared with the split-pairing scheme, it is worth noting

that the tree-based scheme can tolerate multiple colluding

insider attackers. Since channel keys are based on the

secure pairwise keys or newly reestablished subgroup keys,

colluding insider attackers cannot predict those keyed

channels. Additionally, since the number of channels

required in the tree-based scheme is bN
2
c at most, our

scheme can tolerate up to r � bN
2
c attackers to launch

jamming simultaneously with r being the number of

channels available. If multiple access techniques are used,

we expect to use less channels and tolerate more attackers.

5 Performance evaluations

In this section, we first describe our testbed, and then

present the evaluation results of the split-pairing scheme

and the tree-based scheme.

5.1 Testbed configuration

The testbed consists of 17 Mica2 motes [6] deployed at

fixed locations in an indoor laboratory. Each sensor mote

has a 902–928 MHz Chipcon CC1000 radio, which has

32 800 KHz channels. Each mote is within the communi-

cation range of other motes and the transmission rate is

19.2 Kbps. All motes run TinyOS version 2.0.1 [29].

In TinyOS 2.0.1, the module CC1000ControlP provides

interface CC1000Control and command tuneManual() to

control channel switching. Since Chipcon CC1000 uses a

digital frequency synthesizer, a programmable register can

be used to change the frequency and then achieve channel

switching.

In TinyOS 2.0.1, the implementation of the mote-to-mote

communication depends on the radio chip. For Chipcon

CC1000, the communication is implemented in two

Algorithm 1 Key-tree based

scheme
Input: a set nodes numbered 1, …, N and their pairwise secret keys;

Procedure:

1: k = 1;

2: repeat

3: Select Channel Key = Kð2k �iþ1Þ�ð2k �ðiþ1ÞÞ for

i ¼ 0; 1; . . .; bN
2kc

4: Switch to Channel Cð2k �iþ1Þ�ð2k �ðiþ1ÞÞ;

5: For node 2k � iþ 1, generate subgroup key

Kð2kþ1 �iþ1Þ�ð2kþ1 �ðiþ1ÞÞ ¼ FK
2kþ1 �iþ1;2k �ð2iþ1Þþ1

ð0Þ;

6: For node 2k � iþ 1, propagates new subgroup key to nodes 2k � iþ 2 to 2k � ðiþ 1Þ;
7: k??;

8: until k ¼¼ dlog2 Ne

1520 Wireless Netw (2011) 17:1513–1527

123

modules: CC1000CsmaP and CC1000SendReceiveP under

directory tinyos-2.x/tos/chips/cc1000. CC1000CsmaP pro-

vides CSMA and low-power sensing logic, whereas

CC1000SendReceiveP provides the send-and-receive logic

for CC1000 radio. The send-and-receive logic includes

Request-to-Send (RTS) and Clear-to-Send (CTS). A node

starts data transmission after receiving CTS. CSMA pro-

vides two mechanisms for media access control: random

backoff and carrier sensing. The random backoff mechanism

is used to reduce further collisions where the backoff delay is

randomly set to [1,32] initially. The sensing mechanism is

used to determine if there is any ongoing communication on

the channel. It requires the wireless interface to read

received signal strength indication (RSSI) every 80 ms up to

5 readings. If all 5 readings are above a threshold, the

backoff mechanism is activated. After each RSSI reading,

the threshold is updated and thus it is adaptively changed

with the current channel condition.

We modify the TinyOS source code to implement the

jammer. We disable the random backoff and the sensing

mechanisms so that the jammer can send out packets

arbitrarily to jam the channel. Specifically, we use com-

mand disableCca() provided by the CsmaControl interface

in module CC1000CsmaP to bypass the media access

control. We let the jammer’s wireless interface stay in the

transmission mode by using enterTXState(). We change the

send-and-receive logic so that the jammer always receives

CTS after sending a RTS.

In order to explore the impact of jamming duration, we

bypass the MAC layer and directly use the command

writeByte() provided by the interface HplCC1000Spi. In

this way, the shortest jamming time can be as low as one

byte (tj & 0.42ms). For longer jamming duration, we have

to increase the maximum message size defined in mes-

sage.h, so that the jamming signal can last as long as

100 ms.

5.2 Channel switching latency

In our recovery scheme, we assume that the physical

device has channel switching latency; thus, we first mea-

sure the switching latency for Mica2 motes.

In order to jam a communication channel, the attacker

has to switch to that communication channel and send out

at least a packet of 1 byte for the CC1000 chip. There is a

minimum channel switching latency due to the limitations

of the physical device. Three Mica2 motes as shown in

Fig. 5(a) are selected to measure this channel switching

latency. We consider two switching modes: sequential

switching and random switching. In the sequential

switching mode, motes switch to one channel and send one

minimum packet, then they switch to the next adjacent

channel until all 32 channels are used. We consider two

cases, ascendant and descendent. In the ascendant case,

motes start from the lowest frequency channel to the

highest, while the descendent case uses the reverse order.

By running both cases 1,000 times, we get the average and

divide it by 32 to get the switching latency between two

adjacent channels. In the random switching mode, motes

randomly select the next channel. Similar to the sequential

mode, we run the test 1,000 times to get the switching

latency between two arbitrary channels. As shown in

Fig. 5(b), the switching latency is independent of the

channel switching mode, and it is around 34 ms for all

three motes.

5.3 The performance of the split-pairing scheme

In this subsection, we conduct experiments to study

the effectiveness of the split-pairing scheme described in

Sect. 3, in which we consider a single jammer and the

network is split into two groups. We measure the impact of

the following two parameters: jamming probability and

jamming duration.

5.3.1 The impact of jamming probability

Since the jammer can only jam one channel at a time, it

selects one of the two channels used for intra-group com-

munication with some probability (the jamming probabil-

ity) and sends a minimum size packet, then it repeats this

process. We measure how the jamming probability affects

the recovery latency.

We deploy 8, 12 and 16 nodes in the network and

manually place a jammer in the center of the network to

ensure that it can jam all the nodes. Legitimate nodes are

split into two groups of 4, 6 and 8 nodes respectively. The

network with 16 nodes and one jammer is shown in

Fig. 6(a). We set the retransmission timeout to be 250 ms

since one round of communication should be finished

within 250 ms. For different network size, we measure the

recovery latency of the splitting phase for both groups by

running our scheme 20 times and compute their average.

Figure 6(b) shows the average recovery latency of one

group. As can be seen, the average latency increases with

the jamming probability since nodes have to retransmit

after the data is jammed. For a group of 4 nodes (the

8-node line in the figure considering there are two groups),

the recovery latency does not change too much as the

jamming probability increases from 0.1 to 0.3. This is

because all versions of the group key can be embedded into

one message which makes the key propagation message

(M1) less vulnerable of being jammed. However, when the

group size increases to 6 or 8 nodes, different versions of

the group key have to be split into two messages, and either

Wireless Netw (2011) 17:1513–1527 1521

123

one being jammed will lead to a retransmission, thus

increasing the recovery latency. Moreover, as the network

size increases, more confirmation messages (M2) are

required for key propagation and are more likely to be

jammed, thus further increasing the recovery latency.

Figure 6(c) shows the recovery latency of the splitting

phase in our scheme, which is the minimum of both groups.

Since the jammer cannot jam two groups simultaneously,

jamming one group always means free of jamming in the

other group. After the jamming probability of group 1 is

larger than 0.5, the minimum recovery latency should be

the latency of group 2. This explains why the recovery

latency starts to decrease after the jamming probability is

larger than 0.5. When the jamming probability is 0.5, the

recovery latency reaches the highest point, which is con-

sistent with our results on optimal jammer.

5.3.2 The impact of jamming duration

In this subsection, we evaluate the impact of the jamming

duration. We deploy a network of 16 nodes and fix the

jamming probability to be 0.5. The retransmission time is

set to be 250 ms in Phase II and 70 ms in Phase III. We add

0, 50, 100, 150 and 200 bytes to the jamming packet to

construct different jamming durations.

Figure 7(a) shows the average recovery latency of the

splitting phase by running our scheme 20 times. As can be

seen, the recovery latency increases when the packet size

increases from 0 to 100 bytes, and then decreases when the

packet size increases from 100 to 200 bytes. When the

packet size increases from 0 to 100 bytes, the recovery

latency is longer since the channel is jammed longer,

and ongoing messages are more likely to be jammed and

retransmitted. However, when the jammer stays in one

group longer (100–200 bytes), the other group has larger

chance to finish its intra-group communication. Since the

recovery latency is the minimum key propagation time of

both groups, the splitting phase completes as long as one

group finishes the key propagation. Thus, jamming in one

group longer gives the opportunity for the other group to

finish earlier without any interruption, thus reducing the

recovery latency.

Figure 7(b) shows the recovery latency of the split-

pairing scheme including all three phases. Let Ts denote the

switching time from phase II to phase III. We consider two

cases Ts = 1,000 ms and Ts = 1,200 ms due to the fol-

lowing reason. The splitting phase can be finished between

4 and 5 broadcast rounds. Since the retransmission timeout

is 250 ms, the splitting phase should be finished between

time 250*4=1,000 to 1,250 ms. If we set Ts smaller than

1,000 ms, the splitting phase may not complete. If we set

Ts larger than 1,250 ms, both groups may have finished the

key propagation and the pairing phase (Phase III) is not

required any more. By setting the channel switching time

(a)

Device 1 Device 2 Device 3
0

10

20

30

40

50

C
ha

nn
el

 S
w

itc
hi

ng
 L

at
en

cy
 (

m
s)

Random
Ascendent
Descendent

(b)
Fig. 5 a Three Mica2 motes are

used for measuring the channel

switching latency. b the channel

switching latency for the three

Mica2 motes

(a)

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

Jamming Probability

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)
8 nodes
12 nodes
16 nodes

(b)

0 0.2 0.4 0.6 0.8 1
200

300

400

500

600

700

800

900

Jamming Probability for Group 1

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

8 nodes
12 nodes
16 nodes

(c)

Fig. 6 a A network with 16 legitimate nodes and one jammer. b The recovery latency of the splitting phase (Phase I and II) for a single group.

c the recovery latency of the splitting phase (Phase I and II) which is the minimum latency of both groups

1522 Wireless Netw (2011) 17:1513–1527

123

to be 1,000 and 1,200 ms, we can investigate the impact of

the jamming duration for both splitting phase (Phase II)

and pairing phase (Phase III). For each jamming duration

and switch time, we record the overall latency, and repeat

the experiment 20 times. We also compute the mean and

the 95% confidence interval shown as vertical bar in

Fig. 7(b).

For Ts = 1, 200 ms, the latency does not change too

much compared with the case of Ts = 1,000 ms. Given

Fig. 7(a), both groups have adequate time to finish the key

propagation and therefore less communication is needed in

the pairing phase. However, when the jamming duration

increases, the latency slightly increases and the variability

becomes larger. This is because the recovery difference

between two groups in the splitting phase becomes more

significant with longer jamming duration, thus more

communications are needed in the pairing phase. This

trend becomes more obvious with ts = 1,000 ms. With

Ts = 1,000 ms, the latency increases significantly between

100 and 150 bytes and declines between 150 and 200

bytes. Since pairing in phase III needs more communica-

tion when the jamming duration increases, the random scan

of the jammer in the pairing phase may have more chances

to corrupt the communication and more messages are

needed to be retransmitted. Therefore, the latency becomes

larger. However, when the jamming duration increases, the

jammer can scan less number of channels for a given period

of time which reduces the chance of packets being jammed,

thus the overall recovery latency becomes smaller.

5.4 The performance of the tree-based scheme

The tree-based scheme can be used to deal with multiple

colluding jammers. In our experiment, the number of jammers

is between one and three. Since the jammers cannot predict the

secret channels, they randomly select a channel and jam it.

For one jammer, it is responsible for all 32 channels. For two

or three jammers, each is responsible for 1
2

or approximately 1
3

of the 32 channels. For example, in the case of three jammers,

one jammer is responsible for channels 1–11, the second

jammer is responsible for channel 12–22, and the third jammer

is responsible for channel 23–32.

5.4.1 Impact of the jamming duration

We conduct an experiment to study the impact of the

jamming duration. In the experiment, we add 1, 16, 46, 76,

136, and 216 bytes to the jamming packet to construct

different jamming durations.

The number of legitimate nodes in the network is 8 as

shown in Fig. 8(a). For different numbers of jammers and

jamming packet sizes, we measure the finish time 100

times and average them as the recovery latency shown in

Fig. 8(b).

The figure shows that the recovery latency is below one

second in most cases. When the jamming packet size

increases from 1 to 16 bytes, the recovery latency

decreases quickly, but stops decreasing when the jamming

packet size increases from 16 to 76 bytes. This is because

the legitimate nodes have more delay since the channel is

more likely to be occupied by the jamming signal, and

more ongoing messages for the key propagation are cor-

rupted by jammers and have to be retransmitted. However,

beyond 76 bytes, the recovery latency begins to increase

rapidly. The major reason is that legitimate nodes cannot

transmit during jamming since each node always reads

high signal strength. They can not seize the channel which

results in longer recovery latency. From the figure, we can

also see that the recovery latency increases with the num-

ber of jammers since more jammers can jam more

channels.

5.4.2 The impact of the network size

We set up another experiment to explore the impact of

network size. In the experiment, the number of legitimate

nodes in the network are 4, 8 and 16. One jammer is placed

in the network with the jamming packet size of 150 bytes.

The results are shown in Fig. 8(c).

0 50 100 150 200
0

200

400

600

800

1000

Jamming Packet Payload Size (Bytes)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

(a)

0 50 100 150 200
800

900

1000

1100

1200

1300

1400

1500

Jamming Packet Payload Size (Bytes)

O
ve

ra
ll

R
ec

ov
er

y
La

te
nc

y
(m

s)

Switch Time Ts=1000 ms
Switch Time Ts=1200 ms

(b)
Fig. 7 a The recovery latency

of the splitting phase (Phase I

and II) under different jamming

duration (Jamming

probability = 0.5, network

size = 16 nodes), b recovery

latency for the split-pairing

scheme (including all 3 phases)

under different jamming

duration (jamming

probability = 0.5, network

size = 16 nodes)

Wireless Netw (2011) 17:1513–1527 1523

123

In the tree-based scheme, if groups on the same level of

the tree can work in parallel, the recovery latency is pro-

portional to the height of tree log(n). However, in Fig. 8(c),

the recovery latency grows faster than log(n). There are

two explanations. First, more legitimate nodes require

more channels at the beginning of the recovery. For

instance, 8 nodes need 4 channels and 16 nodes need 8

channels. Therefore, the attacker are more likely to suc-

cessfully jam legitimate packets which leads to more re-

transmissions. The second reason is related to collisions.

For a large network, the probability of different nodes

using the same channel is higher than a network with less

number of nodes. When collision occurs during recovery,

more retransmissions are needed and the recovery latency

is increased.

5.5 Discussions

In this paper, we have focused on the Mica2 mote platform,

but our scheme can also be applied to some other plat-

forms. For example, Atheros 802.11 WiFi chipset has

channel switching latency of 7.6 ms. Given the transmis-

sion rate of WiFi 54 Mb/s and a key size of 256 bits, more

than 1,500 keys can be transmitted within one channel

switching. Thus, our scheme works much more effectively

for the WiFi platform.

For the MicaZ sensor, the channel switching latency is

132 us and the minimum time for key propagation com-

munication is 424 us [33]. It consists of the time for the

jammer to leave the key propagation channel, send a

minimum packet and then return. Given the transmission

rate of 250 Kbps, only about 13 bytes could be transmitted.

Considering the MAC frame header and key size, 13 bytes

are not enough to transmit one key. To deal with this

problem, we can apply the chained hash fragmentation

technique [26]. The basic idea is to divide a large frame

into small fragments. By hashing cyclically, fragments can

be linked to reconstruct the original frame after receiving

all of them.

6 Related works

Jamming models have been widely studied, classified and

evaluated. For example, jammers can be classified in terms

of capabilities (broadband or narrowband) or behaviors

(constant, deceptive, random, reactive) [37]. Jammers

studied in prior works [2, 13, 18, 34, 35, 37] can also be

categorized based on their protocol layers. Physical layer

jammers directly emit energy on communication channels

to interfere the reception of legitimate transmissions. MAC

layer jammers can insert dummy packets or preambles to

deceive the receivers. Cross-layer jammers can attack some

specific higher layer network protocols such as TCP or

UDP to generate infinite retransmissions.

Most physical layer countermeasures rely on the spread

spectrum technique. These solutions require that both the

sender and receiver share the same key and the same pseu-

dorandom function to generate a hopping or spreading

sequence. For example, [19, 25, 26, 31] studied the problem

of key establishment without pre-shared secret under jam-

ming. In [26], a node pair establishes a new key by randomly

hopping on a large number of channels until they use the

same channel. However, this solution does not provide an

efficient solution for broadcast since it only deals with one-

to-one communication. To fix this problem and support

group communication, UDSSS [19] has been proposed for

broadcast communication. Basically, the sender sends a

message repeatedly and the receivers synchronize the

transmission with a sliding-window approach and despread

the received message by searching through a set of codes.

However, most of the physical layer approaches require

sophisticated processing unit and storage device which are

not applicable to sensor nodes. For example, Mica2 Mote

does not support Direct-Sequence Spread Spectrum (DSSS).

Researchers studied jamming attacks on a broadcast

channel in [12, 28]. Lazos et al. [12] considered an insider

attacker who can compromise nodes to obtain the crypto-

graphic information such as hopping sequences. A cluster

head generates hopping sequences for each member in

(a)

0 50 100 150 200
700

800

900

1000

1100

Jamming Packet Payload Size (byte)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

3 Jammers
2 Jammers
1 Jammer

(b)

4 8 16

400

600

800

1000

1200

1400

Number of Legitimate Nodes (Network Size)

A
ve

ra
ge

 R
ec

ov
er

y
La

te
nc

y
(m

s)

(c)

Fig. 8 a A network with 8 nodes and 3 jammers. b Recovery latency of the tree based scheme under different jamming packet size.

c The recovery latency under different network size

1524 Wireless Netw (2011) 17:1513–1527

123

which some positions of the sequences share the same

frequency bands for the control channel. The compromised

node is identified by metrics such as the expected hamming

distance. The cluster head then updates and redistributes

the hopping sequence. To deal with a similar problem,

Tague et al. [28] proposes a framework to control the

channel access, using the random assignment of crypto-

graphic keys to hide the location of the control channels.

Both schemes, however, are centralized with the help of

either cluster heads or trusted authorities.

For broadcast channel with insider receivers, group-based

schemes [4, 7, 8] have been proposed. Researchers consider a

scenario in which receivers in broadcast systems could be

compromised and deceived as jammers. The idea is to divide

receivers into multiple broadcast groups and different groups

use different channels so that a compromised receiver can

only jam the communication in the same group. Then, a

divide-and-conquer strategy is applied to revoke malicious

receivers. However, these schemes require a large number of

available channels for broadcast. Otherwise, the compro-

mised nodes could coordinate to jam all channels in a group.

For WSNs, [35] discussed evasion strategies called

channel surfing under a narrow-band and intermittent

jammer. The basic idea is that the jammed nodes change

channels which cannot be predicted by the jammer. How-

ever, if the attacker can jam two channels at any time, the

channel surfing scheme will not work. To solve the prob-

lem, Xu et al. [36] designed a new scheme based on the

timing covert channel, which is effective against a broad-

band and constant/persistent attacker. In their scheme, a

timing-based overlay and a coding/decoding scheme are

established to convey information. However, this technique

can only support low-rate and it is unclear how to extend it

to a network with multiple nodes.

In our earlier work Jiang et al. [9], we addressed the

insider jamming problem in WSNs. The solution is based

on the assumption that only one node can be compromised

as an insider jammer. However, in reality, more nodes may

be compromised to launch jamming attacks, which have

been addressed in this paper.

7 Conclusions and future work

Wireless communication is susceptible to jamming attacks.

Although some research has been conducted on countering

jamming attacks, few works consider jamming attacks

launched by insiders. In this paper, we proposed two

schemes to address the insider jamming problem. In the

split-pairing scheme, we exploit the fact that a single

jammer can only jam one channel for any given time and

nodes in other channels will be free of jamming and hence

can start the recovery process. We further consider multiple

colluding jammers in the tree-based scheme. Since

attackers cannot compromise all pairwise keys, we use

non-compromised pairwise keys at the beginning for

deriving secret channels and propagating new keys. The

new keys can be used to select channels and encrypt new

keys again. This procedure continues until all non-

compromised nodes share a common new key. Based on

experimental results on Mica2 motes, we found that the

split-pairing scheme is more efficient, but it can only deal

with a single insider jammer. The tree-based scheme can

cope with multiple colluding jammers, but it has higher

message complexity and longer recovery time. As future

work, we will focus on more advanced attacker models and

we will extend our research to multi-hop networks.

Acknowledgments The authors would like to thank anonymous

reviewers for their insightful comments and helpful suggestions.

This work was supported in part by Army Research Office under

MURI grant W911NF-07-1-0318 and NSF CAREER 0643906.

References

1. Blundo, C., Santis, A. D., Herzberg, A., Kutten, S., Vaccaro, U.,

& Yung, M. (1993). Perfectly-secure key distribution for dynamic

conferences. In Advances in cryptology, Proceedings of CRYPTO
92, (pp. 471–486).

2. Brown, T., James, J., & Sethi, A. (2006). Jamming and sensing of

encrypted wireless ad hoc networks. In ACM Mobihoc.

3. Chan, H., Perrig, A., & Song, D. (2003). Random key predistri-

bution schemes for sensor networks. In IEEE Security and Pri-
vacy Symposim.

4. Chiang, J. T. & Hu, Y.-C. (2008). Dynamic jamming mitigation

for wireless broadcast networks. In IEEE INFOCOM.

5. Danev, B. & Capkun, S. (2009). Transient-based identification of

wireless sensor nodes. In ACM/IEEE IPSN.

6. Datasheet, C. Chipcon cc1000 radio’s datasheet. http://www.

chipcon.com.

7. Dong, Q. & Liu, D. (2010). Adaptive jamming-resistant broadcast

systems with partial channel sharing. In International conference
on distributed computing systems (ICDCS).

8. Dong, Q., Liu, D., & Ning, P. (2008). Pre-authentication filters:

Providing dos resistance for signature-based broadcast authenti-

cation in wireless sensor networks. In ACM conference on
wireless network security (WiSec).

9. Jiang, X., Hu, W., Zhu, S., & Cao, G. (2010). Compromise-

resilient anti-jamming for wireless sensor networks. In Interna-
tional conference on information and communications security.

10. Karlof, C., Sastry, N., & Wagner, D. (2004). Tinysec: A link

layer security architecture for wireless sensor networks. In ACM
SenSys.

11. Kim, Y., Perrig, A., & Tsudik, G. (2004). Tree-based group key

agreement. ACM TISSEC, 7(1), 60–96.

12. Lazos, L., Liu, S., & Krunz, M. (2009). Mitigating control-

channel jamming attacks in multi-channel ad hoc networks. In

ACM WiSec.

13. Li, M., Koutsopoulos, I., & Poovendran, R. (2007). Optimal

jamming attacks and network defense policies in wireless sensor

networks. In IEEE Infocom.

14. Liu, D., Ning, P., & Li, R. (2003). Establishing pairwise keys in

distributed sensor networks. In ACM CCS.

Wireless Netw (2011) 17:1513–1527 1525

123

http://www.chipcon.com
http://www.chipcon.com

15. Navda, V., Bohra, A., Ganguly, S., & Rubenstein, D. (2007).

Using channel hopping to increase 802.11 resilience to jamming

attacks. In IEEE Infocom.

16. Park, T., & Shin, K. G. (2005). Soft tamper-proofing via program

integrity verification in wireless sensor networks. In IEEE
transactions on mobile computing.

17. Perrig, A., Song, D., & Tygar, J. D. (2001). Elk, a new protocol

for efficient large-group key distribution. In IEEE Symposium on
Security and Privacy.

18. Poisel, R. (2004). Modern communications jamming principles

and techniques. Artech House Publisher. http://www.amazon.com/

Communications-Jamming-Principles-Techniques-Information/dp/

158053743X.

19. Popper, C., Strasser, M., & Capkun, S. (2009). Jamming-resistant

broadcast communication without shared keys. In USENIX
Security Symposium.

20. Proakis, J. G. (2000). Digital communications (4th ed.). New

York: McGraw-Hill.

21. Rodeh, O., Birman, K., & Dolev, D. (2000). Optimized group

rekey for group communication systems. In Network and Dis-
tributed System Security Symposium (NDSS).

22. Schleher, C. (1999). Electronic warfare in the information age. In

MArtech House.

23. Seshadri, A., Perrig, A., van Doorn, L., & Khosla, P. (2004).

Swatt: Software-based attestation for embedded devices. In IEEE
Symposium on Security and Privacy.

24. Shaneck, M., Mahadevan, K., Kher, V., & Kim, Y. (2005).

Remote software-based attestation for wireless sensors. In ESAS.

25. Strasser, M., Popper, C., & Capkun, S. (2009). Efficient unco-

ordinated fhss anti-jamming communication. In ACM Mobihoc.

26. Strasser, M., Popper, C., Capkun, S., & Cagalj, M. (2008).

Jamming-resistant key establishment using uncoordinated fre-

quency hopping. In IEEE Symposium on Security and Privacy
(pp. 64–78).

27. Sun, Y., & Wang, X. (2009). Jammer localization in wireless sensor

networks. In Proceedings of the 5th international conference on
wireless communications, networking and mobile computing.

28. Tague, P., Li, M., & Poovendran, R. (2009). Mitigation of control

channel jamming under node capture attacks. IEEE Transactions
on Mobile Computing, 8(9), 1221–1234.

29. Tinyos homepage. http://webs.cs.berkeley.edu/tos/.

30. Towsley, D., Kurose, J., & Pingali, S. (1997). A comparison of

sender-initiated and receiver-initiated reliable multicast proto-

cols. IEEE Journal on Selected Areas in Communications
(JSAC).

31. Wang, Q., Xu, P., Ren, K., & Li, X.-Y. (2011). Delay-bounded

adaptive ufh-based anti-jamming wireless communication. In

IEEE INFOCOM.

32. Wong, C., Gouda, M., & Lam, S. S. (1998). Secure group com-

munication using key graphs. In ACM special interest group on
data communication (SIGCOMM).

33. Wood, A., Stankovic, J., & Zhou, G. (2007). Deejam: Defeating

energy-efficient jamming in ieee 802.15.4-based wireless net-

works. In IEEE SECON.

34. Wood, A. D., Stankovic, J. A., & Son, S. H. (2003). Jam: A

jammed-area mapping service for sensor networks. In RTSS ’03:
Proceedings of the 24th IEEE International Real-Time Systems
Symposium.

35. Xu, W., Trappe, W., & Zhang, Y. (2007). Channel surfing:

Defending wireless sensor networks from jamming and interfer-

ence. In ACM IPSN.

36. Xu, W., Trappe, W., & Zhang, Y. (2008). Anti-jamming timing

channels for wireless networks. In ACM WiSec.

37. Xu, W., Trappe, W., Zhang, Y., & Wood, T. (2005). The feasi-

bility of launching and detecting jamming attacks in wireless

networks. In ACM Mobihoc.

38. Yang, Y., Wang, X., Zhu, S., & Cao, G. (2007). Distributed

software-based attestation for node compromise detection in

sensor networks. In IEEE SRDS.

39. Zhang, W., & Cao, G. (2005). Group rekeying for filtering false

data in sensor networks: A predistribution and local collabora-

tion-based approach. In IEEE INFOCOM.

40. Zhang, W., Zhu, S., & Cao, G. (2009). Predistribution and local

collaboration-based group rekeying for wireless sensor networks.

In Ad hoc networks.

41. Zhu, S., Setia, S., & Jajodia, S. (2006). Leap?: Efficient security

mechanisms for large-scale distributed sensor networks. In ACM
TOSN.

Author Biographies

Xuan Jiang is a Ph.D. candi-

date in Computer Science and

Engineering at the Pennsylvania

State University. He received

his B.S. in Electronics Science

and Engineering from Univer-

sity of Science and Technology

of China in 2005. His research

primarily on wireless network

security.

Wenhui Hu is a Ph.D. candi-

date in Computer Science and

Engineering at the Pennsylvania

State University. He received

M.Sc. (Tech) with Distinction,

major in Telecommunications

Software, from Helsinki Uni-

versity of Technology, Finland,

in 2007 and his B.Eng (honored)

in computer science and engi-

neering from Southeast Univer-

sity, Nanjing, China, in 2002.

Wenhui’s research primarily

focuses on network applications

and network security.

Sencun Zhu is an associate

professor at Department of

Computer Science and Engi-

neering and College of Informa-

tion Sciences and Technology,

the Pennsylvania State Univer-

sity. He received the Ph.D.

degree in Information Technol-

ogy from George Mason Uni-

versity in 2004. Prior to that, he

received the M.S. degree in Sig-

nal Processing from University

of Science and Technology of

China in 1999 and the B.S.

degree in Precision Instruments

from Tsinghua University in 1996. His research interests include net-

work and systems security with focuses on wireless security, online

social network security, and software security.

1526 Wireless Netw (2011) 17:1513–1527

123

http://www.amazon.com/Communications-Jamming-Principles-Techniques-Information/dp/158053743X
http://www.amazon.com/Communications-Jamming-Principles-Techniques-Information/dp/158053743X
http://www.amazon.com/Communications-Jamming-Principles-Techniques-Information/dp/158053743X
http://webs.cs.berkeley.edu/tos/

Guohong Cao received the BS

degree from Xian Jiaotong

University, China. He received

the M.S. degree and Ph.D.

degree in computer science

from the Ohio State University

in 1997 and 1999 respectively.

Since then, he has been with the

Department of Computer Sci-

ence and Engineering at the

Pennsylvania State University,

where he is currently a Profes-

sor. His research interests are

wireless networks and mobile

computing. He has published

more than 150 papers in the areas of wireless sensor networks,

wireless network security, vehicular ad hoc networks, data access and

dissemination, and distributed fault-tolerant computing. His work has

been cited over 5000 times and his h-index is 37 based on Google

Scholar. He has served on the editorial board of IEEE Transactions on

Mobile Computing, IEEE Transactions on Wireless Communications,

IEEE Transactions on Vehicular Technology, and has served as

program chair, general chair, and program committee member of

many conferences. He was a recipient of the NSF CAREER award in

2001. He is a Fellow of the IEEE.

Wireless Netw (2011) 17:1513–1527 1527

123

	Compromise-resilient anti-jamming communication in wireless sensor networks
	Abstract
	Introduction
	System model and design goal
	Network model and assumptions
	Attacker model
	Design goal

	The split-pairing scheme
	Phase I: channel splitting
	Phase II: jamming and key propagation within a group
	Phase III: Key propagation between groups

	Tree-based scheme
	Motivations and overview
	The protocol
	Performance analysis

	Performance evaluations
	Testbed configuration
	Channel switching latency
	The performance of the split-pairing scheme
	The impact of jamming probability
	The impact of jamming duration

	The performance of the tree-based scheme
	Impact of the jamming duration
	The impact of the network size

	Discussions

	Related works
	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

