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Abstract—Mobile sensing relies on data contributed by users
through their mobile device (e.g., smart phone) to obtain useful
information about people and their surroundings. However, users
may not want to contribute due to lack of incentives and
concerns on possible privacy leakage. To effectively promote
user participation, both incentive and privacy issues should be
addressed. Existing work on privacy-aware incentive is limited
to special scenario of mobile sensing where each sensing task
needs only one data report from each user, and thus not
appropriate for generic scenarios in which sensing tasks may
require multiple reports from each user (e.g., in environmental
monitoring applications). In this paper, we propose a privacy-
aware incentive scheme for general mobile sensing, which allows
each sensing task to collect one or multiple reports from each
user as needed. Besides being more flexible in task management,
our scheme has much lower computation and communication
cost compared to the existing solution. Evaluations show that,
when each node only contributes data for a small fraction of
sensing tasks (e.g, due to the incapability or disqualification to
generate sensing data for other tasks), our scheme runs at least
one order of magnitude faster.

I. INTRODUCTION

The ever-increasing popularity of mobile devices such as
smart phones and tablets and the rich set of embedded sensors
that usually come with them (e.g., GPS, accelerometer and mi-
crophone) have created a huge opportunity of sensing. Mobile
sensing tries to harness this opportunity by collecting sensing
data through mobile devices and utilizing the data to obtain
rich information about people and their surroundings. It has
various applications in healthcare [1], [2], traffic monitoring
[3], environmental monitoring [4], etc.

However, the large-scale adoption of mobile sensing appli-
cations is hindered by two obstacles. Firstly, since contributing
sensing data consumes energy and bandwidth, mobile device
users lack incentives to participate. Secondly, private infor-
mation may be derived from a user’s contributed data, e.g.,
the user’s whereabouts and health conditions. Such privacy
concern also prevents users from participating. To effectively
motivate users to participate in mobile sensing, both obstacles
should be overcome.

There are many studies [5]–[13] on these problems, but
most of them address privacy and incentive separately. Several
privacy-protection schemes [5]–[9] have been proposed to
provide anonymity for users, and several incentive schemes
[10]–[13] have been designed to promote participation by
paying credits to users. One may consider simply combining a
privacy protection scheme and a credit-based incentive scheme

together to provide both privacy and incentive, but it is still
unknown how this can be done. Even if such combination
is possible, there are new challenges with the combination.
In particular, anonymity may allow a greedy user to submit
unlimited data reports for the same sensing task (which is
not always desirable) using different anonymous identifiers
and earn unlimited credits. Under the protection of anonymity,
malicious users may also steal and use other users’ credentials
to earn as many credits as possible without being detected.
These challenges call for new designs that simultaneously
address both incentive and privacy for mobile sensing.

To our knowledge, the first and only such design is the
privacy-aware incentive scheme proposed in [14]. That scheme
is designed for a special scenario of mobile sensing where each
sensing task requires only one data report from each user (such
a task is referred to as a single-report task). An example of
single-report task is “Report the noise level around you now,”
which only requires each user to submit a single data report
of his measured noise level.

In the real world, however, there are many sensing tasks
that require multiple reports submitted at different times from
each user (such task is referred to as the multiple-report
task)1. An example of multiple-report task is “Report the
noise level around you every 10 minutes in the following
week.” Many other examples can be found in various mobile
sensing systems [3], [4]. Unfortunately, the existing scheme
[14] cannot be directly extended to support multiple-report
tasks, since its cryptographic construction only allows each
user to earn credits from one report. Although it is possible to
create one task for each report and then apply that scheme, this
will induce high overhead in computation and communication,
and greatly increase the complexity of task management.
For example, to collect the same amount of data that the
aforementioned multiple-report task can do, one single-report
task should be created every 10 minutes, and one set of
cryptographic credentials should be computed, distributed, and
processed for each task.

In this paper, we propose a new credit-based privacy-
aware incentive scheme for mobile sensing. To stimulate
user participation, our scheme rewards users with credits for
their contributed data without revealing what data a user has
contributed. Compared with existing work, our scheme has

1A task that requires multiple sensor readings submitted at the same time is
considered a single-report task here, since these readings can be encapsulated
into one application data unit.
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two major contributions.

• It is more general since it works for both single-report
tasks and multiple-report tasks. It allows each sensing
task to require one or multiple reports from each user as
needed, and thus makes task management much simpler.
For the aforementioned scenario where each user is
expected to submit one report every 10 minutes for a
week, only one task is created.

• It has much lower computation and communication over-
head. In the existing solution, each user spends many
computing and communication resources on every sens-
ing task, even if it cannot contribute (and earn credits) due
to lack of appropriate sensors or being at inappropriate
locations. In our scheme, however, a user only spends a
very small amount of resources on the tasks to which it
will not contribute data, and spends less resources on the
tasks to which it will contribute data. Thus, for a large
system where each user can only contribute to a small
fraction of tasks, our scheme can significantly reduce the
resource overhead.

Our scheme constructs a set of tokens to achieve the goals
on incentive and privacy. The concept of tokens is also used
in [14], but, in our scheme, the types of tokens, relations
between tokens, and operations of processing tokens in each
protocol step are significantly different and specially designed
to support multi-report tasks. In particular, there are three
major differences. (i) We introduce a special type of token
- receipt, to support multi-report tasks. The use of receipt also
enables flexible payment strategies; i.e., the collector can pay
any number of credits for any number of reports as needed.
On the contrary, in [14], the number of credits paid must be
a multiple of the number of reports submitted. (ii) We design
new cryptographic constructions for tokens and new protocols
of processing them to prevent token abuse attacks and reduce
the cost of dealing with tasks to which a user cannot contribute
data. (iii) We design a novel Extended Merkle tree structure
to make efficient privacy-preserving commitment.

The remainder of this paper is organized as follows. Section
II presents system models and cryptographic primitives. Sec-
tion III presents our privacy-aware incentive scheme. Section
IV and Section V evaluate the security and cost of our solution,
respectively. Section VI presents discussions. The last two
sections review related work and conclude the paper.

II. PRELIMINARIES

A. System Model

The system has a data collector and a set of mobile nodes
(i.e., mobile devices such as smartphones carried by people
and mounted to vehicles). Mobile nodes communicate with the
collector through 3G/4G, WiFi and other available networks.
The collector collects sensing data from mobile nodes, and
it may use the data to provide services to other entities for
various applications. To promote participation, the collector
pays credits to nodes for their contributed sensing data. The
credits can be converted to real-world monetary rewards, or

Data Collector Mobile Node

1: Task

3: Data Report/Receipt

4: Receipts/Pseudo-Credits

5: Credit Token

6: Update
2: Task Request/Approval

Credit
Account

Fig. 1. System model.

used to purchase mobile sensing service from the collector. In
this way, nodes are incentivized to contribute data.

The system model is shown in Figure 1. To collect data, the
collector creates sensing tasks and adds them into an active
task queue. A task specifies the type of sensor readings needed,
where and when to sense, number of data reports needed
from each node, number of credits paid to each node, time
of creation, and time of expiration.

At random intervals, each node (using a randomly generated
pseudonym unlinkable to its identity) communicates with the
collector to retrieve active tasks. For example, the node can
wait a uniformly random time before two successive retrievals,
and it may also retrieve tasks at a uniformly random time
within each predefined period (e.g., each day). Here retrieval
times are randomized to prevent the collector from linking a
sequence of retrievals by the same node.

Among the retrieved tasks, the node determines which tasks
to accept. If it wants to be assigned an acceptable task, it sends
a request to the collector in a new connection using a new
pseudonym. The collector returns an approval if it approves the
node’s request. Then the task is assigned to the node. For an
assigned task, the node collects sensing data as specified by the
task. Then it, using a new pseudonym, submits the sensing data
in a report, and the collector issues a receipt to it in the same
communication session. If multiple reports at different times
or locations are needed by the task, the node will submit each
report using a different pseudonym in a separate connection
to the collector.

When a task has collected enough reports, been assigned to
enough nodes or expired, the collector will delete it from the
active task queue.

After a node finishes submitting reports for a task, it (using
a pseudonym) submits the receipts of this task to the collector
to redeem credits. Since the collector does not know the
node’s identity, it issues pseudo-credits to the node which
are transformed into credit tokens by the node. The transform
between a pseudo-credit and a credit token relies on a secret
only known to the node, and hence the collector is not able
to link the credit token to the pseudo-credit or know the task
from which the credit is earned. For each credit token, the
node waits a random time and then, using its real identity,
deposits the token to the collector. The collector maintains a
credit account for each node in the system, and it updates the
depositing node’s credit account accordingly.

For different tasks, the number of credits paid to each
reporting node may be different, depending on factors such
as the type of sensing data needed by a task (e.g., a photo
or an accelerometer reading), the number of reports required
from each node, and other requirements of the task (e.g., if
the data is sensed at special times and locations). Generally
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speaking, the higher cost (e.g., bandwidth, energy consumption
and human attention) is induced for a node to submit data for
a task, the more credits should be paid for the task. In this
paper, we use c to denote the number of credits paid to each
reporting node for a task. The value of c for a task is set by the
collector. Note that a node can choose not to accept a task if
the task is paid at a rate too low. One interesting question for
the collector is how to set c to minimize the total credits paid
for a task, but this topic is beyond the scope of this paper due
to the space limitation, and we plan to explore it in a separate
future work. Although the value of c for a task is not known
until the task is created, we assume that it has an upper limit
C (a system parameter), since it is not quite possible to pay
unlimited credits for a task. In practice, the collector can set
an initial value for C based on estimation, and then updates
C according to dynamic needs.

One important issue for the collector is to control the cost
of data collection (i.e., the number of credits paid to nodes).
To do so, the collector needs to control the number of nodes
that can submit reports for each task. Such control is done
through the task request and approval step.

B. Threat Models

Threats to Privacy The collector wants to know which
reports a node has submitted and which tasks the node has
accepted. It tries to obtain these information by analyzing the
transcripts of our protocol.

Narrow tasking and selective tasking attacks2 are not the
focus of this paper. However, we notice that these attacks have
been addressed by existing work [5], [6], and those solutions
can be easily adapted to our setting. Specifically, to mitigate
narrow tasking, we can introduce a registration authority (as
done in [5]) to ensure that tasks should not target a narrow set
of nodes, and the collector can only publish those tasks verified
and signed by the authority. The basic idea of the defense
against selective tasking proposed in [6] can also be applied
as follows. By comparing the active tasks retrieved at different
times, a node can estimate the length of time that a task stays
in the active task queue. Then based on the predefined period
within which each node retrieves active tasks once, the node
can estimate the number of nodes that have retrieved the task,
and accept the task only if enough nodes have retrieved it.

As in [5], [6], the communications between the collector and
nodes are assumed to be anonymized by, e.g., Mix Networks
and IP address recycling techniques.

With respect to privacy, our goal is to ensure that the
collector cannot link any report to the reporting node, link
multiple reports submitted by the same node, know if a given
node has accepted a given task, or link multiple tasks accepted
by the same node.

Threats to Incentive Nodes are greedy and they may
deviate from our protocol to earn as many credits as possible.

2In narrow tasking attack, the collector crafts a task that only a narrow
set of nodes are able to answer and hence it is less difficult to identify the
nodes answering the task. In selective tasking attack, the collector distributes
a task to only one or a few nodes and thus makes it easier to link the reports
submitted by the same node.
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Fig. 2. An example of Merkle tree.

For example, a node may submit multiple sets (instead of one
set that it is supposed to submit) of reports for each task to
earn multiple rewards from the task. Also, a node may be able
to compromise some other nodes, obtain their secrets, and use
these secrets to earn more credits.

As far as incentive is concerned, we assume that the
collector is honest. It will pay credits to nodes for their data
reports and correctly maintain their credit accounts as specified
by our protocol. Because the collector may make profit by
providing services to other entities based on the collected data,
it is of interest for it to pay credits and encourage participation.

For authentication purposes, the collector and each node
are issued a pair of public and private keys by a certificate
authority. An adversary may compromise a node and know
the node’s keys, but it cannot bind the node to a new pair of
keys.

Data pollution attacks where malicious nodes submit false
sensing data are outside the scope of this paper, and they have
been addressed in existing work [8], [9] which use anonymous
reputation schemes to filter the data submitted from low-
reputation nodes.

With respect to incentive, our goal is to ensure that a
node cannot earn more credits than allowed by our protocol.
Specifically, if a node submits reports for a task, it can earn
c and only c credits (i.e., the rate at which the task is paid)
from the task; if a node is not assigned the task or it does not
submit reports for the task, it earns nothing.

C. Cryptographic Primitives

Our scheme mainly uses three cryptographic primitives,
Merkle tree, blind signature, and partially blind signature.

Merkle tree [15] Merkle tree is an efficient and secure
binary tree structure which is usually used to verify that a set
of committed data items have not been altered. It is built using
one-way hash functions. In a Merkle tree, each leaf node is
the hash of one data item, and each inner node is the hash of
its two children. Figure 2 shows an example Merkle tree built
upon four data items. To commit the data items, the tree root
h14 is sent to the verifier. Later, to prove that a data item, say,
m1, has been included in the tree, h2 and h34 are sent to the
verifier. The verifier checks that h14 = H(H(H(m1)|h2)|h34)
and knows that m1 was indeed committed.

Blind Signature Through a blind signature scheme [16],
a user can obtain a signature from a signer on a message
m without revealing m to the signer. Specifically, the user
blinds m with a random blinding factor to obtain a blinded
message m′ and sends m′ to the signer. With a standard digital
signature algorithm (e.g., RSA), the signer signs on m ′ and
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returns the signature σ ′ to the user. Then the user can obtain
a signature σ on m by removing the blinding factor from σ ′.
Blind signature has two properties, blindness which guarantees
that 〈m,σ〉 cannot be linked to m′ or σ′, and unforgeability
which guarantees that the user cannot derive a valid signature
from σ′ for another message m′′ �= m.

In this paper, blind RSA signature [17] is used due to
its simplicity. It is based on the RSA algorithm. Let 〈e,Q〉
and 〈d,Q〉 denote the signer’s public key and private key
respectively, where Q is the public modulus. If a user wants to
get a blind signature on message m, it computes m ′ = m · ze
mod Q, where z is a random value chosen by the user and
relatively prime to Q. The signer signs on m ′ using the
standard RSA algorithm, and returns the signature σ ′ = (m′)d

mod Q to the user. Then the user computes σ = (σ ′ · z−1)
mod Q which is the signature on m.

Partially Blind Signature Partially blind signature
schemes (e.g., [18]) also enable a user to get a signature
on a message m from a signer without letting the signer
know m. However, the signer can explicitly include some
common information (e.g., date of issue) in the signature.
The signer is not able to link the signature to the message
or to the communication session from which the signature is
obtained, given that the common information is included in
many signatures. The aforementioned unforgeability property
also holds here. In this paper, we do not assume any specific
partially blind signature scheme. Let PBSK(p,m) denote a
partially blind signature for message m, where p is the
common information and K is the signing key.

III. OUR SCHEME

A. Overview

Our scheme relies on a set of tokens (and commitments to
them) constructed and used in an innovative way to achieve
the goals on incentive as well as privacy. The basic idea is to
pre-distribute a set of tokens to each node which will be used
to process future tasks. If these tokens are used correctly, the
goals on incentive can be achieved. Considering that nodes
may misuse their tokens, we propose techniques to ensure
correct usage of tokens. To protect privacy, tokens and the
techniques used to ensure their correct usage are designed in
a privacy-preserving way.

TABLE I
MAJOR NOTATIONS USED IN THIS PAPER

K1,2,3,4 The collector’s private keys to generate
partially blind signature

e, d The collector’s public and private key to
generate blind RSA signature

s1,2,3,4 The secrets of a node
W Num. of tasks in each task window
ni #reports that task i needs from each node
C Max. #credits paid for a task to each node
ci #credits paid for task i to each node
H A cryptographic hash function
m Credit token identifier
m′ Blinded credit token identifier
τ Request token identifier
β Report receipt identifier
γ Report token identifier

TABLE II
CONSTRUCTIONS OF TOKENS

Request Token 〈τ, taskIndex, PBSK1
(taskIndex, τ)〉

Report Token 〈γ, taskIndex, PBSK2
(taskIndex, γ)〉

Report Receipt 〈β, taskIndex, PBSK3
(taskIndex, β)〉

Credit Token 〈m, SIGd(m)〉

To facilitate distribution of tokens, tasks are indexed as 1, 2,
3, ... in the order of their creation time. Tasks are grouped into
task windows of size W (a system parameter, e.g., W = 1000)
according to their indices. The first task window contains tasks
1, 2, ..., W ; the second task window contains tasks W + 1,
W+2, ..., 2W ; and so on. In our scheme, tokens are generated
and distributed based on task windows. When the system
bootstraps (i.e., before any task is created), the collector and
nodes generate tokens for the first task window. As more tasks
are created, the first task window is populated with more tasks.
When the number of created tasks approaches W (i.e., when
the first task window is nearly full), the collector and nodes
generate tokens for the second task window; and so on.

The collector uses a private key d to generate blind RSA
signatures, and it uses four private keys K1, K2, K3 and K4

to generate partially blind signatures. These keys are issued
by a (possibly offline) certificate authority. Each node has
four secrets s1, s2, s3 and s4 which are generated by itself.
The keys and secrets do not have to change for different task
windows. The notations used in our scheme are summarized
in Table I. Tokens are separately summarized in Table II.

B. The Basic Scheme

Without loss of generality, we consider the first task window
when describing our scheme (see Figure 3).

1) Token Distribution: Before any task in this task window
is created, each node connects to the collector using its real
identity to get the tokens and commitments for the tasks in
this window.

For each task i (i = 1, 2, ...,W ) in this window, the node
generates C random credit token identifiers

mij = H(i|Hj(i|s1)) (1)

where j = 1, 2, ..., C. The reason why m is computed in this
way will be explained later. The node will use these identifiers
to construct C credit tokens for processing task i. Specifically,
each credit token consists of an identifier and the collector’s
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RSA signature over the identifier, i.e., 〈mij , SIGd(mij)〉. Note
that the node cannot obtain the signature until it has submitted
reports for this task.

In this phase, the node commits to the collector that it will
use these credit tokens for task i. To do this at low computation
cost, the node builds an extended Merkle tree over m i1, ...,
miC (see details in Section III-C), and then obtains a partially
blind signature from the collector for the root τ of the hash
tree, i.e., PBSK1(i, τ). This signature is the commitment to
the C credit tokens. 〈τ, i, PBSK1(i, τ)〉 will also be used as
the node’s request token for task i.

The node also needs to bind these credit tokens to its
identity. To do this with low cost, the node builds an extended
Merkle tree (see Section III-C) over all the CW credit token
identifiers of the tasks in the task window. Let α denote the
root of this tree. The node, say, Alice, sends 〈α,Alice〉 to the
collector.

In total, the node gets W partially blind signatures, one
for each task in the task window. It stores these signatures to
process the tasks in the window later.

2) Task Request: When the collector publishes task i, it
also publishes n (i.e., the number of reports that each node can
submit for task i) and c (i.e., the number of credits that each
node can earn from task i). Suppose a node has retrieved task
i. If it wants to accept this task, it uses a randomly generated
pseudonym to send a request to the collector which includes
its request token for task i.

node → collector: i, τ, PBSK1(i, τ) (2)

The collector verifies the signature PBSK1(i, τ), and knows
that this is a correct request token for task i. If the collector
does not approve this request, it tags τ as unapproved; oth-
erwise, it tags τ as approved. In either case, the node cannot
use the request token again. In the case of approval, the node
can request n report tokens for task i. It generates n random
values γ1, γ2, ..., γn, and obtains a partially blind signature
PBSK2(i, γj) from the collector for each γj . Conceptually, the
signatures are sent in an approval message:

collector → node: PBSK2(i, γ1), ..., PBSK2(i, γn) (3)

Then the node gets n report tokens for task i, which are
〈γj , i, PBSK2(i, γj)〉 for j = 1, ..., n.

3) Report Submission: The node can submit one report
using each report token. To submit the j th (j = 1, ..., n) report
for task i, it uses a pseudonym to send the following message:

node → collector: i, γj , PBSK2(i, γj), report (4)

The collector verifies the signature PBSK2(i, γj) and accepts
the report. Then it can issue a report receipt to the node.
Specifically, the node generates βj = H(τ |i|n|j) and obtains
PBSK3(i, βj) from the collector.

collector → node: PBSK3(i, βj) (5)

Then the node gets a receipt 〈βj , i, PBSK3(i, βj)〉.

4) Receipts Submission: After submitting n reports for task
i, the node can collect n receipts. After waiting for some
random time, it can submit these receipts to the collector to
redeem c credits. For each mij (j = 1, ..., c), it computes a
random blinding factor

zij = H(i|τ |Hj(i|s2)|y) (6)

where y is the smallest positive integer that makes zij rela-
tively prime to Q. It then computes

m′
ij = mij · zeij mod Q. (7)

From the hash tree rooted at τ , the node gets the proof τ for
mi(c+1), ..., miC , i.e., the tree elements showing that they are
included in the tree (see Section III-C). Then it sends:

node → collector: i, τ, [〈βl, PBSK3(i, βl)〉]l=1,...,n,

Hc+1(i|s1), proofτ , [m′
i1, ...,m

′
ic].

(8)

The collector does the following:

• It checks that τ is an approved request token identifier
for i. This means the node has been assigned task i.

• It verifies that the n partially blind signatures are valid.
This means the node has submitted n reports for task i.

• It verifies that βl = H(τ |i|n|l) for l = 1, ..., n. This is to
prevent an attack as discussed in Section IV.

• For each j ∈ [c + 1, C], it computes mij =
H(i|Hj−c−1(Hc+1(i|s1))). Using proofτ , it verifies that
these C− c credit token identifiers have been included in
the hash tree rooted at τ (see Section III-C).

• It checks that all these mij are different.3 The collector
maintains a dynamic list of credit token identifiers that
have recently been revealed to it, which is denoted
by revealed-list. It also checks that all these mij are
different from those in revealed-list. The collector adds
these mij to revealed-list.

If all these checks succeed, the collector signs on each of m ′
i1,

..., m′
ic using key d, and returns the signatures to the node.

collector → node: SIGd(m
′
i1), ..., SIGd(m

′
ic) (9)

The node removes the blinding factor z e
ij mod Q from

each signature SIGd(m
′
ij) and gets SIGd(mij) which is the

blind signature for mij . In this way, it gets c credit tokens
〈mij , SIGd(mij)〉 for j = 1, ..., c. Besides, the collector also
issues to the node a partially blind signature over a random val-
ue of the node’s choice, which is PBSK4(i, random-value).

5) Credit Deposit: After a node earns a credit token
〈m, SIGd(m)〉, it waits a random length of time between
(0, T ]. Then it uses its identity, say, Alice, to deposit the token.
To show that the token has been bound to Alice in the token
distribution phase, it also sends a proofα showing that m is
included in the hash tree rooted at α.

node → collector: 〈m, SIGd(m)〉, 〈α,Alice〉, proofα (10)

3Under normal conditions, the probability that two m are identical is
negligible, because each m is a result of the hash function H .
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The collector verifies the signature and the proof (see proof
verification in Section III-C). The collector also checks that
m is different from those in revealed-list. Then it adds m to
revealed-list, and increases the node’s credit account by one.

6) Token Revealing: Since usually a node does not submit
reports for all tasks and not every task is paid at the rate
of C credits, some of its credit token identifiers that have
been committed during token distribution are not used in credit
tokens. To prevent a node from reusing these identifiers to earn
more credits than allowed, each node is required to reveal its
unused credit token identifiers. (Note that those credit token
identifiers used in credit tokens can also been as revealed when
the credit tokens are deposited.)

There are two cases of revealing corresponding to assigned
tasks and unassigned tasks respectively. For a task assigned
to a node, the node reveals the unused m when submitting
report receipts to the collector (see Section III-B4), and gets
a token-revealing proof for the task, i.e., the partially blind
signature signed with key K4. For those tasks not assigned to
a node, the node maintains an unassigned list, which records
the indices of the tasks not assigned to it. It reveals the
credit token identifiers committed to each task in this list in
an anonymous communication session (one session for each
task). Specifically, the node simply sends to the collector its
random seed used to generate its m for this task and the
commitment for these m. The collector checks that each of
these m is different from those in revealed-list and then
adds it to revealed-list. Upon revealing, the collector issues a
partially blind signature (signed with key K4) to the node for
the task, which serves as a proof that the node has done token
revealing for the task. To ensure that every node performs
token revealing, before a node is distributed tokens for a new
task window, the collector checks that the node has collected
token-revealing proofs for all the tasks that (i) the node has
been distributed tokens for and (ii) have expired for a certain
time T ′. Here T ′ is a grace period for nodes to reveal token.

The unassigned list is maintained as follows. For a task that
a node has retrieved, the node adds the task into its unassigned
list if it does not want to accept the task, it wants to accept the
task but the task was removed from the active task queue by
the collector before it sends a request, or it has requested the
task but the request was not approved. For a task index that
the node does not see the corresponding task in the active task
queue (e.g., a task that has been assigned to enough nodes and
hence removed from the queue before the node retrieves it),
it also adds the task index into its unassigned list.

When a node deposits a credit token 〈m, SIGd(m)〉, if the
collector finds that m has been revealed by another node as
an unused credit token identifier, it denies the deposit. When
a node reveals its unused m, if the collector finds that m has
been used by another node in a deposited credit token, the
collector can punish that node, e.g., decreasing that node’s
credit account by one which is equivalent to reclaiming the
credit token.

C. Extended Merkle Tree

In the token distribution phase, a node uses one hash tree
rooted at τ to commit to its C credit token identifiers for each
task, and it uses another hash tree rooted at α to bind the CW
credit token identifers for the task window to its identity. This
section describes how the hash tree is constructed. Without
loss of generality, we only consider the first tree with C credit
token identifiers, and assume that C is a power of two4.

Merkle tree [15] is a well-known technique to make efficient
commitment, but it is not secure to directly use it here. Let
us look at the example in Figure 4(a). Suppose only one
credit will be paid for a task i (i.e., 〈m1, SIGd(m1)〉). When
a reporting node submits report receipts to redeem the credit
(see Section III-B4), it reveals m2, m3, m4 to the collector,
as well as the proof that they are included in the tree. When
the standard Merkle tree is used, the proof includes h1, i.e.,
H(m1). Thus the collector can link h1 to task i. When the
node deposits the credit token 〈m1, SIGd(m1)〉 later using its
real identity, the collector finds that h1 is the hash of m1. Then
it can link m1 to task i, and know that the node has submitted
reports for task i. This may cause privacy leakage. (Similarly,
the tree rooted at α cannot use standard Merkle tree.)

To address this problem, we propose an extended Merkle
tree (see Figure 4(b)). In our construction, each m j (j =
1, ..., 4) has a sibling rj which is a random value (named
pairing value) generated by the node. m j and rj are included
in the tree in different ways. For instance, in Figure 4(b), leaf
h1 = H(m1) but leaf h2 = H(1|r1). This is to prevent rj
from being used as a credit token identifier. Inner nodes of
the tree are computed in the same way as the standard Merkle
tree. The proof for m2, m3, and m4 include h4, h6, h8 and
h12. When the node deposits the credit token 〈m1, SIGd(m1)〉,
the collector cannot link h12 to m1 since it does not know r1.
Thus, it does not know from which task this credit is earned.

To construct the tree for task i, a node uses its secret s3 to
generate the pairing values. Specifically, for m ij (j = 1, ..., C)
in Equation 1, the corresponding pairing value r ij is

rij = H(i|Hj(i|s3)). (11)

The proof for mi(c+1), ..., mC in Equation 8 includes
Hc+1(i|s3) (which is used to compute ri(c+1), ..., rC ) and
the appropriate tree elements.

For the tree rooted at α, the credit token identifiers should
be randomly shuffled before constructing the hash tree. Also,
each node uses a different secret s4 to generate the pairing
values.

D. Token Removal

For a node, report token, report receipt and credit token
can be discarded after usage. The request token and credit
token identifiers for a task can be discarded after the receipt
submission phase if the node has submitted reports for the task

4If C is not a power of two, each node can pad some known values (e.g.,
1) as the right-most leaves of the tree to make the number of leaves a power
of two, and prove that these padding values are included in the tree.
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Fig. 4. The basic idea of our extended Merkle tree.

or after the token revealing phase otherwise. The collector
stores the 〈α, nodeID〉 pair that each node uses to bind its
credit token identifiers of a task window until a duration of T
has passed after the last unexpired task in the window expires.

E. Dealing with Joins and Leaves of Nodes

Suppose at the time of join and leave task i is the most
recently created task, and there exists an integer k such that
kW ≤ i < (k + 1)W . If a node joins, it runs the token
distribution phase for tasks i + 1, i + 2, ..., (k + 1)W . If a
node leaves, it releases its request tokens for task i + 1 and
later tasks so that the collector can invalidate them. In both
cases, no changes are made to other nodes.

IV. SECURITY ANALYSIS

This section analyzes how the goals on privacy and incentive
are achieved, and how attacks against them are mitigated.

A. Attacks on Privacy

Figure 5 shows the linkability between different tokens and
objects in our scheme. From the figure, it is easy to see that the
collector cannot link a report to the reporting node. Although
task index can be linked to its report and request token (as well
as the objects reachable from them via arrows in Figure 5), it
cannot be linked to deposited credit tokens, tree root α or the
node’s identity. Thus, the collector does not know if a node has
accepted or submitted reports for a given task. Since report can
only be linked to report token, and report tokens used by the
same node are generated independently using partially blind
signatures, the collector cannot link multiple reports submitted
by the same node. Similarly, since a node’s request tokens are
generated independently using partially blind signatures, it is
impossible to link multiple tasks accepted by the same node.

B. Attacks on Incentive

We first consider an attacker that acts alone and then
consider an attacker that has compromised some other nodes.

1) Attacker Acting Alone: In the token distribution phase
for a task window, each node (with its real identity) can bind
one and only one τ (and C credit token identifiers that have
been used to compute τ via an extended Merkle tree) to each
task in the window. The node can also bind CW credit token
identifiers to its identity through another extended Merkle tree.
It cannot bind more than CW identifiers since this can be
easily detected by the collector through the height of tree.
Since the binding happens before the node knows any task in
the window, the best strategy for the node is to bind to its

deposited credit
token (m)

node
ID

request token
( )

tree root
( )

X

X

PBS

commitment
not revealed

unused credit
token (m)

ext. hash
tree

X
commitment
not revealed

Xblinded credit
token id (m’)

XBS

commitment
revealed

in same msg

report

report
token

report
receipt

X PBS

X
PBS

in same msg

hash

in same msg

items transmitted
with real id

items transmitted
with pseudonym X

reason unlinkable due
to “reason”
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to “reason”

revealing
proof

XPBS

Fig. 5. The linkability between different components. Rounded rectangles
(rectangles) denote the items distributed or transmitted with the node’s real
identity (randomly generated pseudonyms). The texts along lines and arrows
explain the reason why the two connected items are linkable or unlinkable.

identity the credit token identifiers that it has committed to
each task through τ , such that it has the capability to earn
credits from every task.

Since each node can only bind one set of request token and
credit token identifiers to each task, an attacker can only earn
c credits by submitting reports for a task where c is the rate at
which the task is paid. If the attacker is not assigned the task,
it cannot submit reports. If it is assigned the task but does not
submit reports, it cannot get any report receipt. In both cases,
it will not obtain any credit. Thus, an attacker that acts alone
cannot make our scheme fail to achieve the incentive goal.

2) Attacker Controlling Other Nodes: Suppose an attacker
has compromised some other nodes. Since each node must use
its real identity in the token distribution phase, similar to the
analysis in Section IV-B1, an attacker can only bind one set of
credit token identifiers (m1, ..., mC ) to each task and to its real
identity even if it has compromised other nodes. Moreover, the
token revealing scheme ensures that all credit token identifiers
committed in the token distribution phase will be revealed to
the collector (because if the attacker or a compromised node
does not reveal its credit token identifiers, it will not get new
tokens for future task windows), and the collector checks that
they are different. Thus, any credit token that the attacker can
earn from the task must use one of m1, ..., mC .

Earning credits without submitting reports. The attacker
may get the tokens that a compromised node obtained before
being compromised, and use them to earn credits without
submitting any report. Depending on the type of token abused,
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TABLE III
THE COMPUTATION AND COMMUNICATION COST PER TASK PER NODE

Unassigned task Assigned task Average

Computation Ours 2 PBS + 4C H (2 + 2n) PBS + c M.E. + 4C H (2 + 2εn) PBS + εc M.E. + 4C H
LC C PBS + C M.E. (C + 2n) PBS + 2C M.E. (C + 2εn) PBS + (1 + ε)C M.E.

Communication Ours O(1) O(n+ c+ logC) O(ε logC + εn+ εc)
LC O(C) O(n+ c+ C) O(C + εn+ εc)

M.E. stands for modular exponentiation. ε denotes the average fraction of tasks assigned to each node.

the attacker can launch two attacks.
• It tries to deposit the compromised node’s undeposited

credit token to its own account, but it will fail since that
credit token has been bound to the compromised node’s
identity in the token distribution phase.

• It tries to submit the compromised node’s report receipts
to earn credits. However, during receipt submission, the
collector checks the relation between τ and report re-
ceipts. Since the compromised node’s report receipts do
not match the attacker’s τ , the attack fails.

Earning more credits from submitting reports. Now let
us look at the number of credits that the attacker can earn
from submitting reports for one task. There are two cases. If
the attacker is assigned the task and has submitted reports,
it obtains c credit tokens using m1, ..., mc. However, since
the remaining C − c credit token identifiers mc+1, ..., mC

are revealed as unused during the receipt submission phase,
it cannot use them in credit tokens even if it can submit
more reports for this task, e.g., using the report tokens of
a compromised node. If the attacker is not assigned the task,
it needs to reveal m1, ..., mC as unused, which means they
cannot be used in credit tokens. Thus, a node can earn c credits
if it is assigned a task and submits reports for the task, but
earns nothing otherwise.

V. COST EVALUATIONS

This section analyzes and evaluates the cost of our scheme.
We compare our scheme against the scheme proposed in
[14] (labeled as LC), which to our best knowledge is the
only existing solution to privacy-aware incentive for mobile
sensing.

A. Cost Analysis

In this section, we analyze the cost of our incentive scheme
at each node and the collector. The cost of reading sensors
and submitting data is not analyzed here.

1) Cost at Node: The cost induced by a task to a node
depends on if the node is assigned the task.

For an unassigned task, the computation cost mainly in-
cludes the generation of two partially blind signature (one for
τ and one for revealing proof) and 4C invocations of the hash
function H used to generate credit token identifiers as well
as two hash trees. As to communication, the node obtains a
partially blind signature in the token distribution phase. In the
token revealing phase, it sends to the collector a request token
and two random seeds that are used to generate m and pairing
values for the task. Hence, the communication cost is O(1).

For an assigned task requiring n reports and paid at c
credits, the computation cost mainly includes the generation

of 2n + 2 partially blind signatures for request token, report
token, report receipt and token-revealing proof, c modular
exponentiations used to blind m, and 4C invocations of H . As
to communication, the node mainly sends and receives a total
of 2n report tokens and receipts as well as 2c blinded credit
token identifiers and RSA signatures. It also sends about logC
hash tree elements as a proof in the receipt submission phase.
Therefore, the overall communication cost is O(n+c+logC).

As to storage cost, the node mainly stores C credit token
identifiers for some short time (see Section III-D). If the node
has submitted reports for the task, it also stores c credit tokens
for some short time. Since modern smart phones usually have
many gigabytes of storage, the storage cost is not a big issue.

Table III summarizes the computation and communication
cost of our scheme as well as the LC scheme. Note that the LC
scheme needs to use n separate single-report tasks to collect
n reports. To make fair comparisons, the two schemes are
configured to pay the same amount of credits for the n reports,
which means each of the single-report tasks is paid for c

n
credits. Since in the LC scheme each task must be paid for
at least one credit, we make the comparisons for those cases
where n ≤ c.

From Table III, it can be seen that for an unassigned task
the communication cost of our scheme is reduced from O(C)
to O(1). Considering that C can reach a few hundred or
even larger in practice (e.g., a task may be paid from 6 to
220 dollars in Gigwalk [19] which means C > 220), our
communication cost can be orders of magnitude lower. Since
hash function runs orders of magnitude faster than partially
blind signature and modular exponentiation, our computation
cost for an unassigned task can also be orders of magnitude
smaller than LC. For an assigned task, our cost is also smaller
than LC since n ≤ c and c ≤ C.

Table III also shows the average cost for each node. The
average cost depends on the fraction of tasks assigned to the
node out of all created tasks. Let ε denote the average fraction
of tasks assigned to each node. In a large system with many
tasks, we expect that each node can accept and be assigned
only a small portion of tasks due to its resource limitation.
For example, a node that lives in Newark may not be able to
answer the tasks that require location-based data from New
York. Thus, ε is expected to be very small, e.g., ε � 1.
Then the average computation and communication cost of our
scheme is much lower than the LC scheme.

2) Cost at the Collector: Note that ε can also denote
the average fraction of nodes that each task is assigned to.
The computation and communication cost at the collector is
summarized in Table IV. Since n ≤ c ≤ C, ε � 1 and blind
signature (SIG) has similar computation overhead as partially
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TABLE IV
THE COLLECTOR’S AVERAGE COMPUTATION AND COMMUNICATION COST

PER TASK PER NODE

Comp. Ours (2 + 2εn) PBS + εc SIG + ε(C − c) M.E. + 3C H
LC (C + 2εn) PBS + εc SIG + (1 + ε)C M.E.

Comm. Ours O(ε logC + εn+ εc)
LC O(C + εn+ εc)

TABLE V
THE RUNNING TIME OF CRYPTOGRAPHIC PRIMITIVES

PBS SIG M.E. H
Smartphone 4.2ms - 1.7ms 0.08ms

Laptop 4.0ms 1.6ms 0.1ms 0.001ms

blind signature (see later), the collector’s computation and
communication overhead in our scheme is much lower than
that in LC. As to storage cost, the collector mainly stores
the credit token identifiers of recent tasks for some time.
Expectedly the storage overhead is not an issue for modern
servers with very large and inexpensive storage.

B. Implementation

We have implemented our scheme in Java. Partially blind
RSA signature [20] is used as the PBS scheme, and SHA-
256 is used as the hash function H . For comparison, the LC
scheme is also implemented.

Based on the implementation, we measured the running time
of PBS, RSA signature, modular exponentiation and hash on
Android Nexus S Phone (Android 4.0.4 OS, 1GHz CPU and
512MB RAM) and a laptop (Windows 7 OS, 2.6GHz CPU
and 4GB RAM) (see Table V), and calculated the running
time of the two schemes according to Table III and IV. Here,
we set C = 256 and ε = 0.01. For n and c, we consider four
extreme cases which correspond to four typical types of tasks:
n = c = 1 (Type I), n = 1, c = 256 (Type II), n = 256, c =
256 (Type III), and n = 256, c = 1 (Type IV). Note that Type
IV does not apply to the LC scheme.

Table VI shows the results in running time. Our scheme runs
at least one order of magnitude faster than the LC scheme at
each node (on the smartphone), and two orders of magnitude
faster at the collector (on the laptop). Note that in our scheme,
when ε is small, hash operations also play a significant role
in the running time.

The power consumption of our scheme is also measured on
smartphone using Monsoon Power Monitor. In this group of
experiments, a Nexus S Phone runs the whole life cycle of one
task for 100 tasks. In this process, the smartphone connects
to a laptop (Windows 8.1 OS, 2.4GHz CPU, and 4GB RAM)
with TCP over WiFi, launching a new TCP connection for
each phase. Each data report has 8 bytes, which is of similar
size as an accelerometer, temperature, noise and GPS reading.

TABLE VI
THE AVERAGE RUNNING TIME OF PROCESSING A TASK

Type I Type II Type III Type IV
n = 1 n = 1 n = 256 n = 256
c = 1 c = 256 c = 256 c = 1

Node Ours 90ms 95ms 116ms 112ms
LC 1.5s 1.5s 1.5s -

Collector*
Ours 10ms 14ms 37ms 33ms
LC 1.2s 1.2s 1.2s -

*The time is needed to process a task for each node.

TABLE VII
THE ENERGY CONSUMPTION OF OUR SCHEME ON A SMARTPHONE

Type I Type II Type III Type IV

Unassigned Task Ours 0.25 J 0.25 J 0.25 J 0.25 J
LC 1.5 J 1.5 J 1.4 J -

Assigned Task Ours 0.27 J 0.5 J 4.2 J 4.1 J
LC 1.7 J 1.7 J 12.6 J -

Average (ε = 0.01)
Ours 0.25 J 0.25 J 0.29 J 0.29 J
LC 1.5 J 1.5 J 1.5 J -

#Tasks per battery* Ours 79,920 79,920 68,897 68,897
LC 13,320 13,320 13,320 -

*The number of tasks that a fully-charged battery (3.7V, 1500 mAh)
for Nexus S phone can support (calculated from average consumption).

The results are shown in Table VII. Again Type IV task does
not apply to the LC scheme and thus is not shown. It can
be seen that the energy consumption of our scheme is very
low. When ε = 0.01, it is only 0.25-0.29 Joules per task on
average. Such low consumption allows a fully-charged battery
(3.7V, 1500 mAh) of Nexus S phone to support more than 68
thousand of tasks before being depleted.

From Table VII, it can also be seen that our scheme
consumes much less (67%-84% less) energy than the LC
scheme. Since energy consumption is determined by both
computation and communication overhead, it confirms that
our scheme in much more efficient than the LC scheme in
computation and communication.

VI. DISCUSSIONS

Supporting report-based payment. In the scheme de-
scribed above, a node gets paid after it submits all the n reports
for a task. In practice, a node may only be able to generate less
than n reports for the task. In some scenarios, it is desirable
to pay the node some credits according to how many reports it
has submitted. Our scheme can be easily adapted for this case.
Specifically, when a node submits report receipts, the collector
can flexibly determine the number of credits that should be
paid to it by the number of receipts that it has.

Greedy attacks. In our scheme, after a node retrieves a
task, it waits a random time before requesting the collector to
assign the task to it. This is to protect the privacy of the node.
However, a greedy node that does not care about its privacy
may continuously retrieve tasks and request a task immediately
after retrieval, in order to have a better chance to be assigned
the task. Such behavior may prevent other nodes from earning
credits. To mitigate it, the collector can select each requesting
node with a certain probability. Note that if a node’s request
is not approved, its request token is invalidated and it cannot
submit a request again. Since each node only has one request
token for each task, sending the request early does not give it
much privilege.

Other attacks. An isolation attack is discussed in [14], in
which the collector issues the tokens for a task window to
only one node. Then the collector can easily link the reports
for these tasks to this node. An inference attack based on a
node’s credit balance is also pointed out in [14]. The solutions
to these attacks discussed in [14] also work in our setting.
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VII. RELATED WORK

Several incentive schemes [10]–[13], [21] have been de-
signed for mobile sensing using gaming and auction theories,
but they do not consider protection of privacy. Many solu-
tions [5]–[9], [22]–[26] of protecting user privacy have been
proposed in mobile sensing. Among them, AnonySense [5],
[6] and PEPSI [7] provide frameworks for anonymous data
collection. Several studies [27]–[31] address privacy-aware
data aggregation. Christin et al [8] and Wang et al [9] proposed
privacy-aware reputation schemes that employ reputation to
filter incorrect sensor readings. DeCristofaro et al [32] consider
a scenario where external entities query specific users’ data
and study how to hide which user matches a query. TPM is also
used to protect user data [33]. However, none of these privacy
protection schemes addresses the incentive issue. Recently, Li
and Cao [14] proposed a privacy-aware incentive scheme, but
it is designed for single-report tasks and has high computation
and communication cost.

VIII. CONCLUSIONS

In this paper, we proposed a credit-based privacy-preserving
incentive scheme for mobile sensing to facilitate large-scale
adoption of this emerging sensing paradigm. The privacy
preservation feature of our scheme does not rely on any trusted
third party. Compared with existing work, our scheme is a
more generic solution that can flexibly support both single-
report and multiple-report sensing tasks. It is also much more
efficient in computation and communication. Implementation-
based measurements show that our scheme runs (consumes) at
least one order of magnitude faster (67%-84% less power) than
existing work when each node can only submit data report for
a small portion of tasks due to resource limitation.
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