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Abstract—Mobile sensing relies on data contributed by users through their mobile device (e.g., smart phone) to obtain useful

information about people and their surroundings. However, users may not want to contribute due to lack of incentives and concerns on

possible privacy leakage. To effectively promote user participation, both incentive and privacy issues should be addressed. Although

incentive and privacy have been addressed separately in mobile sensing, it is still an open problem to address them simultaneously. In

this paper, we propose two credit-based privacy-aware incentive schemes for mobile sensing systems, where the focus is on privacy

protection instead of on the design of incentive mechanisms. Our schemes enable mobile users to earn credits by contributing data

without leaking which data they have contributed, and ensure that malicious users cannot abuse the system to earn unlimited credits.

Specifically, the first scheme considers scenarios where an online trusted third party (TTP) is available, and relies on the TTP to protect

user privacy and prevent abuse attacks. The second scheme considers scenarios where no online TTP is available. It applies blind

signature, partially blind signature, and a novel extended Merkle tree technique to protect user privacy and prevent abuse attacks.

Security analysis and cost evaluations show that our schemes are secure and efficient.

Index Terms—Privacy, incentive, mobile, sensing
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1 INTRODUCTION

THE ever-increasing popularity of mobile devices such as
smart phones and tablets and the rich set of embedded

sensors that usually come with them (e.g., GPS, accelerome-
ter and microphone) have created a huge opportunity of
sensing. Mobile sensing tries to harness this opportunity by
collecting sensing data through mobile devices and utilizing
the data to obtain rich information about people and their
surroundings. It has many applications in healthcare [1], [2],
traffic monitoring [3], and environmental monitoring [4].

However, the large-scale deployment of mobile sensing
applications is hindered by two obstacles. First, there is a
lack of incentives for mobile device users to participate in
mobile sensing. To participate, a user has to trigger her sen-
sors to measure data (e.g., to obtain GPS locations), which
may consume much power of her smart phone. Also, the
user needs to upload data to a server which may consume
much of her 3G data quota (e.g., when the data is photos).
Moreover, the user may have to move to a specific location
to sense the required data. Considering these efforts and
resources required from the user, an incentive scheme is
strongly desired for mobile sensing applications to prolifer-
ate. Second, private information may be derived from a
user’s contributed data. Such privacy concern also prevents
users from participating. For instance, to monitor the propa-
gation of a new flu, a server will collect information on who

have been infected by this flu. However, a patient may not
want to provide such information since it is very sensitive.
To effectively motivate users to participate, both obstacles
should be overcome.

Several privacy-protection schemes [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14] have been proposed to provide ano-
nymity for users, and many incentive schemes [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28]
have been designed to promote participation by paying
credits to users. However, they address privacy and incen-
tive separately.

It is nontrivial to simultaneously address incentive and
privacy. One may consider simply combining a privacy pro-
tection scheme and a credit-based incentive scheme to pro-
vide both privacy and incentive, but such combination is
not easy since those schemes have been designed under dif-
ferent system models and assumptions. More importantly,
a simple combination cannot address the new challenges
that only arise when both incentive and privacy are consid-
ered and were not addressed by the privacy protection
scheme or the incentive scheme. In particular, existing pri-
vacy preserving schemes provide anonymity for users. Ano-
nymity may allow a greedy user to anonymously submit
unlimited data reports for the same sensing task (which is
not always desirable) and earn unlimited credits without
being detected. This will increase the cost of data collection.
Moreover, under the protection of anonymity, a malicious
user who has compromised other users’ mobile devices
can steal those users’ security credentials such as crypto-
graphic keys and anonymously use the stolen credentials to
cheat and earn as many credits as possible without being
detected. Thus, the key new challenge with designing credit-
based privacy-aware incentive schemes for mobile sensing
is how to prevent various abuse attacks while preserving
privacy. This challenge calls for new designs that integra-
tively address incentive and privacy.
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Our previous work [29] designs a privacy-aware incen-
tive scheme for a special scenario of mobile sensing where
each sensing task requires only one data report from each
user (such a task is referred to as a single-report task). An
example of single-report task is “Report the noise level
around you now,” which only requires each user to submit
a single data report of his measured noise level. In the real
world, however, there are many sensing tasks that require
multiple reports submitted at different times from each user
(such task is referred to as the multiple-report task).1 An
example of multiple-report task is “Report the noise level
around you every 10 minutes in the following week.” Many
other examples can be found in various mobile sensing sys-
tems [3], [4]. Unfortunately, that work cannot be directly
extended to support multiple-report tasks, since its crypto-
graphic construction only allows each user to earn credits
from one report. Although it is possible to create one task
for each report and then apply that scheme, this will induce
high overhead in computation and communication, and
greatly increase the complexity of task management. For
example, to collect the same amount of data that the afore-
mentioned multiple-report task can do, one single-report
task should be created every 10 minutes, and one set of
cryptographic credentials should be computed, distributed,
and processed for each task.

In this paper, we propose two privacy-aware incentive
schemes for mobile sensing that can support multiple-
report tasks. We adopt a credit-based approach which
allows each user to earn credits by contributing its data
without leaking which data it has contributed. At the same
time, the approach ensures that malicious users cannot
abuse the system to earn unlimited amount of credits. In
particular, the first scheme is designed for scenarios where
an online trusted third party (TTP) is available. It relies on
the TTP to protect privacy and prevent abuse attacks, and
has very low computation cost at each user. The second
scheme does not require any online TTP. It applies blind
signature, partially blind signature, and an extended Merkle
tree to protect privacy and prevent abuse attacks.

The remainder of this paper is organized as follows.
Section 2 presents system models. Section 3 presents an
overview of our solution. Section 4 and Section 5 present
our two incentive schemes. Section 6 presents cost evalua-
tions. Section 7 presents discussions. The last two sections
review related work and conclude the paper.

2 PRELIMINARIES

2.1 System Model

The system has a data collector and a set of mobile nodes
(i.e., mobile devices such as smartphones carried by people
and mounted to vehicles). Mobile nodes communicate with
the collector through 3G/4G, WiFi and other available net-
works. The collector collects sensing data from mobile
nodes, and it may use the data to provide services to other
entities for various applications. To promote participation,
the collector pays credits to nodes for their contributed

sensing data. The credits can be converted to real-world
monetary rewards, or used to purchase mobile sensing ser-
vice from the collector. In this way, nodes are incentivized
to contribute data.

The system model is shown in Fig. 1. To collect data, the
collector creates sensing tasks and adds them into an active
task queue. A task specifies the type of sensor readings
needed, where and when to sense, number of data reports
needed from each node, number of credits paid to each
node, time of creation, and time of expiration.

At random intervals, each node (using a randomly gener-
ated pseudonym unlinkable to its identity) communicates
with the collector to retrieve active tasks. For example, it
can wait a uniformly random time between two successive
retrievals, and it may also retrieve tasks at a uniformly ran-
dom time within each predefined period (e.g., each day).
Retrieval times are randomized to prevent the collector
from linking a sequence of retrievals by the same node.

Among the retrieved tasks, the node determines which
tasks to accept. If it wants to be assigned an acceptable task,
it sends a request to the collector in a new connection using
a new pseudonym. The collector returns an approval if it
approves the node’s request. Then the task is assigned to
the node. For an assigned task, the node collects sensing
data as specified by the task. Then it, using a new pseudo-
nym, submits the sensing data in a report, and the collector
issues a receipt to it in the same communication session. If
multiple reports at different times or locations are needed
by the task, the node will submit each report using a differ-
ent pseudonym in a separate connection to the collector.

When a task has collected enough reports, been assigned
to enough nodes or expired, the collector will delete it from
the active task queue.

After a node finishes submitting reports for a task, it
(using a pseudonym) submits the receipts of this task to the
collector to redeem credits. Since the collector does not know
the node’s identity, it issues pseudo-credits to the node which
are transformed into credit tokens by the node. The transform
between a pseudo-credit and a credit token relies on a secret
only known to the node, and hence the collector is not able to
link the credit token to the pseudo-credit or know the task
from which the credit is earned. For each credit token, the
node waits a random time and then, using its real identity,
deposits the token to the collector. The collector maintains a
credit account for each node in the system, and it updates the
depositing node’s credit account accordingly.

For different tasks, the number of credits paid to each
reporting node may be different, depending on factors such
as the type of sensing data needed by a task (e.g., a photo or
an accelerometer reading), the number of reports required
from each node, and other requirements of the task (e.g., if
the data is sensed at special times and locations). Generally
speaking, the higher cost (e.g., bandwidth, energy consump-
tion and human attention) is induced for a node to submit

Fig. 1. System model.

1. A task that requires multiple sensor readings submitted at the
same time is considered a single-report task here, since these readings
can be encapsulated into one application data unit.
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data for a task, themore credits should be paid for the task. In
this paper, we use c to denote the number of credits paid to
each reporting node for a task. The value of c for a task is set
by the collector. Note that a node can choose not to accept a
task if the task is paid at a rate too low. One interesting ques-
tion for the collector is how to set c tominimize the total cred-
its paid for a task, but this topic is beyond the scope of this
paper due to the space limitation, and we plan to explore it
in a separate future work. Although the value of c for a task
is not known until the task is created, we assume that it has
an upper limit C (a system parameter), since it is not quite
possible to pay unlimited credits for a task. In practice, the
collector can set an initial value for C based on estimation,
and then updatesC according to dynamic needs.

One important issue for the collector is to control the cost
of data collection (i.e., the number of credits paid to nodes).
To do so, the collector needs to control the number of nodes
that can submit reports for each task. Such control is done
through the task request and approval step.

2.2 Threat Models

Threats to privacy. The collector wants to know which
reports a node has submitted and which tasks the node has
accepted. It tries to obtain these information by analyzing
the transcripts of our protocol.

Narrow tasking attack (in which the collector crafts a task
that only a narrow set of nodes are able to answer and hence
it is less difficult to identify the nodes answering the task)
and selective tasking attack (in which the collector distrib-
utes a task to only one or a few nodes and thus makes it eas-
ier to link the reports submitted by the same node) are not
the focus of this paper. However, we notice that these
attacks have been addressed by existing work [5], [6], and
those solutions can be easily adapted to our setting. Specifi-
cally, to mitigate narrow tasking, we can introduce a regis-
tration authority (as done in [5]) to ensure that tasks should
not target a narrow set of nodes, and the collector can only
publish those tasks verified and signed by the authority.
The basic idea of the defense against selective tasking pro-
posed in [6] can also be applied as follows. By comparing
the active tasks retrieved at different times, a node can esti-
mate the length of time that a task stays in the active task
queue. Then based on the predefined period within which
each node retrieves active tasks once, the node can estimate
the number of nodes that have retrieved the task, and accept
the task only if enough nodes have retrieved it.

As in [5], [6], the communications between the collector
and nodes are assumed to be anonymized, e.g., by Mix Net-
works and IP address recycling techniques.

Threats to incentive. Nodes are greedy and they may devi-
ate from our protocol to earn as many credits as possible.
For example, a node may submit multiple sets (instead of
one set that it is supposed to submit) of reports for each task
to earn multiple rewards from the task. Also, a node may be
able to compromise some other nodes, obtain their secrets,
and use these secrets to earn more credits.

As far as incentive is concerned, we assume that the collec-
tor is honest. It will pay credits to nodes for their data reports
and correctly maintain their credit accounts as specified by
our protocol. Because the collector may make profit by

providing services to other entities based on the collected
data, it is of interest for it to pay credits and encourage
participation.

For authentication purposes, the collector and each node
are issued a pair of public and private keys by a possibly
offline certificate authority. To thwart Sybil attacks, the cer-
tificate authority ensures that users cannot forge nodes and
each node can only get one set of authentication keys. An
adversary may compromise a node and know the node’s
keys, but it cannot bind the keys to another arbitrary node.
The binding between key and node can only be done
through a certificate signed by the certificate authority.

Data forgery attacks where malicious nodes submit fake
sensing data are outside the scope of this paper, and possi-
ble solutions are discussed in Section 7.

2.3 Our Goals

With respect to privacy, our goal is to ensure that the collec-
tor cannot link any report to the reporting node, link multi-
ple reports submitted by the same node, know if a given
node has accepted a given task, or link multiple tasks
accepted by the same node.

With respect to incentive, our goal is to ensure that a node
cannot earn more credits than allowed by our protocol. Spe-
cifically, if a node submits reports for a task, it can earn c
and only c credits (i.e., the rate at which the task is paid)
from the task; if a node is not assigned the task or it does
not submit reports for the task, it earns nothing.

2.4 Cryptographic Primitives

Our scheme mainly uses three cryptographic primitives,
Merkle tree, blind signature, and partially blind signature.

Merkle tree [30]. Merkle tree is an efficient and secure
binary tree structure which is usually used to verify that a set
of committed data items have not been altered. It is built using
one-way hash functions. In aMerkle tree, each leaf node is the
hash of one data item, and each inner node is the hash of its
two children. Fig. 2 shows an example Merkle tree built upon
four data items. To commit the data items, the tree root h14 is
sent to the verifier. Later, to prove that a data item, say, m1,
has been included in the tree, h2 and h34 are sent to the veri-
fier. The verifier checks that h14 ¼ HðHðHðm1Þjh2Þjh34Þ and
knows thatm1 was indeed committed.

Blind signature. Through a blind signature scheme [31], a
user can obtain a signature from a signer on a message m
without revealing m to the signer. Specifically, the user
blinds m with a random blinding factor to obtain a blinded
messagem0 and sendsm0 to the signer. With a standard dig-
ital signature algorithm (e.g., RSA), the signer signs on m0

and returns the signature s0 to the user. Then the user can
obtain a signature s on m by removing the blinding factor
from s0. Blind signature has two properties, blindness which

Fig. 2. An example of Merkle tree.
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guarantees that hm; si cannot be linked to m0 or s0, and
unforgeability which guarantees that the user cannot get a
valid signature from s0 for another messagem00 6¼ m.

In this paper, blind RSA signature [32] is used due to its
simplicity. It is based on the RSA algorithm. Let he;Qi and
hd;Qi denote the signer’s public key and private key respec-
tively, where Q is the public modulus. If a user wants to get
a blind signature on message m, it computes m0 ¼ m�
ze modQ, where z is a random value chosen by the user and
relatively prime to Q. The signer signs on m0 using the stan-
dard RSA algorithm, and returns the signature s0 ¼
ðm0Þd modQ to the user. Then the user computes s ¼ ðs0�
z�1ÞmodQwhich is the signature onm.

Partially blind signature Partially blind signature schemes
(e.g., [33]) also enable a user to get a signature on a message
m from a signer without letting the signer know m. How-
ever, the signer can explicitly include some common infor-
mation (e.g., date of issue) in the signature. The signer is not
able to link the signature to the message or to the communi-
cation session from which the signature is obtained, given
that the common information is included in many signa-
tures. The aforementioned unforgeability property also
holds here. In this paper, we do not assume any specific
partially blind signature scheme. Let PBSKðp;mÞ denote a
partially blind signature for message m, where p is the com-
mon information andK is the signing key.

3 AN OVERVIEW OF OUR APPROACH

The key challenge with designing a credit-based privacy-
aware incentive scheme for mobile sensing is how to pre-
vent abuse attacks (in which attacking nodes misbehave
to earn more credits than they should) while preserving
privacy. This problem becomes especially difficult to solve
when an attacker may compromise other nodes and anony-
mously use their credentials to earn credits.

Our schemes innovatively construct and use a set of
tokens to achieve the goals on incentive and privacy. They
include request token which is used to request a task, report
token which is used to submit a data report, receipt which is
issued to a node after it submits a data report, and credit
token which can be deposited to earn credits. To prevent
abuse attacks, each node pre-determines the request token,
receipts, and credit tokens that it will use to process each
future task, and commits that it will use them for this task.
To protect privacy, tokens and commitments are designed
and used in a privacy-preserving way.

To facilitate distribution of tokens, tasks are indexed as 1,
2, 3, ...in the order of their creation time. Tasks are grouped
into task windows of size W (a system parameter, e.g.,
W ¼ 1; 000). The first task window contains tasks 1, 2, . . .,
W ; the second task window contains tasks W þ 1, W þ 2,
. . ., 2W ; and so on. In our schemes, tokens are generated
and distributed based on task windows. When the system
bootstraps (i.e., before any task is created), the collector and
nodes generate tokens for the first task window. As more
tasks are created, the first task window is populated with
more tasks. When the number of created tasks approaches
W (i.e., when the first task window is nearly full), the collec-
tor and nodes generate tokens for the second task window;
and so on.

Our schemes work independently for each task window
in five phases:

Setup. This phase happens before any task in the task
window is created. In this phase, the tokens and commit-
ments for the task window are precomputed and appropri-
ately distributed to nodes and the collector.

Task assignment. Suppose a node has retrieved a task i
from the collector via an anonymous communication ses-
sion. If the node wants to be assigned this task, it sends a
request to the collector which includes its request token.
The collector verifies that the token has been committed for
task i in the setup phase. If the collector approves this
request, it returns an approval message to the node. From
the approval message, the node can compute the report
tokens for task i. However, the node cannot derive any
report token without the approval message.

Report submission. After the node generates a report for
task i, it submits the report and its report token for task i via
an anonymous communication session. The collector veri-
fies that the report token has been committed for task i, and
then issues a receipt to the node.

Receipt submission. After submitting all required reports
for a task, a node waits for some random time and then
submits the receipts to the collector. The collector verifies
the receipts, and then issues pseudo-credits to the node.
From the pseudo-credits, the node can generate some credit
tokens. It cannot obtain any credit token without the
pseudo-credits.

Credit deposit. After a node gets a credit token, it waits for
some random time and then deposits the token to the collec-
tor. The collector verifies that the token has been committed
to it, and increases its credit account.

To prevent abuse attacks, in the setup and credit deposit
phases, each node communicates with the collector using its
real identity and authenticates itself with the keys issued by
the certificate authority.

In spite of sharing the same protocol phases, the two pro-
posed schemes have different token constructions and com-
mitment techniques. The first scheme assumes an online
trusted third party, and uses the TTP to generate tokens for
each node and their commitments. It relies on the TTP to
protect privacy and prevent abuse attacks, and has very low
computation cost. The second scheme does not assume any
online TTP. Each node generates its tokens and commit-
ments in cooperation with the collector using blind signa-
ture, partially blind signature, and extended Merkle tree.
These techniques have higher computation cost, but they
protect each node’s privacy against any third party.

The notations used are summarized in Table 1.

4 A TTP-BASED SCHEME

This scheme assumes an online TTP, but this assumption
can be relaxed as shown in Section 7. The collector uses two
private keys K2 and K3 to generate partially blind signa-
tures. These keys are issued by a (possibly offline) certificate
authority.

4.1 The Basic Scheme

Without loss of generality, we consider the first task win-
dow when describing our scheme (see Fig. 3).
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4.1.1 Setup

The TTP assigns and delivers a secret s to each node and a
secret key sk to the collector. The secrets for different nodes
are different. The TTP also generates a nonce r to identify
this set of secrets, and sends it to each node and the collec-
tor. If a new set of secrets are assigned to the collector and
nodes later, a new nonce will be generated.

The TTP computes other credentials using the set of
secrets and the nonce. We first describe how to generate
the tokens and commitments for a single node. Let s
denote the secret of this node. From s and the nonce r,
the TTP derives two other secrets s1 ¼ Hðsjrj1Þ and
s2 ¼ Hðsjrj2Þ.

Step 1. The TTP computesW request tokens for the node.
Each token will be used for one task. The token for task i

(i 2 ½1;W �) is ti ¼ Hð0jHiðs1ÞÞ. Here, the one-wayness of
hash chain is exploited to calculate ti (see explanations in
Section 4.2). The commitment to ti is hHðtiÞ; ii.

Step 2. The TTP computes CW credit tokens for the node.
Since at this time the TTP does not know the number of
credits that the collector will pay for each task, it generates
the maximum possible number of credit tokens for
each task. The tokens for task i are computed as ’j ¼
HMACs2ðjjijHMACskðrjijtiÞÞ for j ¼ 1; . . . ; c. The commit-

ment of ’ij is hHð’ijÞ; NIDi, where NID is the node’s

real identity.
Similarly, the TTP can generate tokens and commitments

for other nodes. It randomly shuffles each type of commit-
ments and sends them to the collector.

Finally, each node gets one secret and one nonce. The col-
lector gets one secret key, one nonce, NW commitments for
request tokens and NCW commitments for credit tokens.
The TTP stores the secret key of the collector, the secret of
each node and the nonce.

4.1.2 Task Assignment

When the collector publishes task i, it also publishes n and c
(see Table 1). Suppose a node has retrieved a task i. If it
decides to accept this task, it anonymously sends a request

to the collector. The request contains its request token for

this task, which is ti ¼ Hð0jHiðs1ÞÞwhere s1 ¼ Hðsjrj1Þ

node ! collector : i; ti: (1)

The collector verifies that hHðtiÞ; ii is a valid commitment
and delete this commitment to avoid reuse of this token. If
it approves this request, it tags t as approved. In this case, the
node can request n report tokens for task i. It generates n
random values g1, g2, . . ., gn, and obtains a partially blind
signature PBSK2

ði; gjÞ from the collector for each gj. Con-

ceptually, the signatures are sent in an approval message:

collector ! node : PBSK2
ði; g1Þ; . . . ;PBSK2

ði; gnÞ: (2)

Then the node gets n report tokens for task i, which are
hgj; i;PBSK2

ði; gjÞi for j ¼ 1; . . . ; n.

4.1.3 Report Submission

The node can submit one report using each report token. To
submit the jth (j ¼ 1; . . . ; n) report for task i, it anony-
mously sends the following message:

node ! collector : i; gj;PBSK2
ði; gjÞ; report: (3)

The collector verifies the signature PBSK2
ði; gjÞ and accepts

the report. Then it can issue a receipt to the node. Specifi-
cally, the node generates bj ¼ HðtijijnjjÞ and obtains

PBSK3
ði;bjÞ from the collector

collector ! node : PBSK3
ði;bjÞ: (4)

Then the node gets a receipt hbj; i;PBSK3
ði;bjÞi.

4.1.4 Receipts Submission

After submitting n reports for task i, the node can collect n
receipts. After waiting for some random time, it can submit
these receipts to the collector to redeem c credits. It sends:

node ! collector : i; ti; ½hbj;PBSK3
ði; bjÞi�j¼1;...;n: (5)

The collector checks that ti is an approved request token
identifier for i, which means the node has been assigned
task i. It verifies that the n partially blind signatures are
valid, which means the node has submitted n reports for
task i. It also verifies that bj ¼ HðtijijnjjÞ for j ¼ 1; . . . ; n.

Then the collector returns c pseudo-credits:

collector ! node : ½HMACskðrjtijjÞ�j¼1;...;c: (6)

Then the node computes c credit tokens ’j ¼
HMACs2ðijHMACskðrjijtijjÞÞ for j ¼ 1; . . . ; c where s2 ¼
Hðsjrj2Þ.

TABLE 1
Notations Used in This Paper

K1;2;3;4 The collector’s private keys to generate partially
blind signature

e; d The collector’s public and private key to generate
blind RSA signature

s1;2;3;4 The secrets of a node
N Num. of nodes in the system
W Num. of tasks in each task window
n Num. of reports that a task needs from each node
c Num. of credits paid for a task to each node
C Max. num. of credits paid for a task to each node
H A cryptographic hash function
t Request token in the TTP-based scheme;

Request token identifier in the TTP-free scheme
g Report token identifier
b Receipt identifier
’ Credit token in the TTP-based scheme
m Credit token identifier in the TTP-free scheme
m0 Blinded credit token id in the TTP-free scheme

Fig. 3. The basic TTP-based scheme.
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4.1.5 Credit Deposit

After the node gets a credit token ’, it waits a length of time
randomly selected from ð0; T � to mitigate timing attacks (see
Section 4.3) and then deposits the token using its real iden-
tity NID:

node ! collector : NID; ’: (7)

The collector verifies that hHð’Þ; NIDi is a valid commit-
ment and deletes it to avoid token reuse. Then it increases
the node’s credit account by one.

4.1.6 Commitment Renewal

When the current task window is nearly full, the collector
should communicate with the TTP to obtain another set of
commitments for the next task window. The collector’s
secret key, nodes’ secrets and the nonce are not changed.

4.2 Dealing with Dynamic Joins and Leaves

Join. In the setup phase, the TTP assumes the existence of V
(a system parameter) virtual nodes besides the N real
nodes. It generates the tokens and commitments for both
real and virtual nodes. Also, it sends the commitments for
the request tokens of the virtual nodes, mixed with the com-
mitments for the real nodes, to the collector.

When a new node joins, the TTP maps it to an unused
virtual node and sends the virtual node’s secret r to it. Also,
the TTP generates the credit tokens for the new node (i.e.,
the mapped virtual node) and sends their commitments to
the collector. Afterward, it tags the mapped virtual node as
used. No changes are made to other nodes.

If there is no available unused virtual node when the new
node joins, the TTP reruns the setup phase again in which a
new set of secrets are issued to the collector and all the cur-
rent nodes as well as a new set of virtual nodes. Some nodes
may not have network access during the setup phase and
hence cannot receive the new nonce and their new secrets.
To address this problem, whenever a node retrieves tasks
from the collector, it checks if it has the same nonce r with
the collector. Note that the collector always has the latest
version of nonce. If the node’s nonce is out of date, it means
that the node has missed the previous setup phase and its
secret is also out of date. In this case, the node connects to
the TTP to update its secret and nonce.

In practice, the value of parameter V can be adjusted
based on churn rate. If the churn rate is high (i.e., new nodes
join frequently), a larger V can be used to reduce the number
of reruns of the expensive setup phase, at the cost of higher
storage at the collector. If the churn rate is low, a smaller V
can be used to reduce the collector’s storage overhead.

Leave. When a node leaves, its request tokens for future
tasks should be invalidated at the collector. Note that if the
request token for a future task is invalidated, the credit
tokens for the same task are also invalidated automatically,
since the the leaving node will not be able to compute them.
Let r denote the leaving node’s secret, r denote the current

nonce and s1 ¼ Hðsjrj1Þ. The TTP releases � ¼ Hiðs1Þ to the
collector, where i is the next task to be published. From �,
the collector can compute the request tokens of the leaving
node for future tasks. For example, the token for a future

task iþ j is Hð0jHjð�ÞÞ. The collector will invalidate these
tokens. However, due to the one-way property ofH, the col-
lector cannot derive the tokens that the leaving node used in
previous tasks. No changes are made to other nodes.

4.3 Addressing Timing Attacks

If a node deposits a credit token earned from a report imme-
diately after it submits the report, since it uses its real iden-
tity to deposit the token, the collector may be able to link the
report to it via timing analysis. Thus, the node should wait
some time before it deposits the credit token. Specially, after
a node gets a credit token, it waits a length of time randomly
selected from ð0; T � and then deposits the token. The param-
eter T is large enough (e.g., one month) such that, in each
time interval T , many tasks can be created and most nodes
have chances to connect to the collector.

4.4 Commitment Removal

The collector removes the commitments to the previous W
tasks as follows. Note that part of commitments are
removed to avoid token reuse immediately after the corre-
sponding tokens are verified. Since not all nodes accept all
tasks, some commitments may remain after the previous W
tasks have been processed. Let texp denote the maximum
time at which each of the previous W tasks will expire.
Note that all reports for the W tasks are submitted before
texp and all credit tokens paid for these reports are sent to
nodes before texp. Thus, the collector can remove the remain-
ing commitments to request tokens after time texp. To allow
nodes to deposit their earned credit tokens, the collector
stores the remaining commitments to credit tokens for
another time period of T (as discussed in Section 4.3), and
removes them after time texp þ T . If a node (e.g., with very
infrequent network access) wants to deposit some credit
tokens after their commitments are deleted, the collector
can check the validity of these tokens with the TTP, and
update the node’s credit account accordingly.

4.5 Security Analysis

4.5.1 Attacks on Privacy

Fig. 4 shows the linkability between different tokens and
objects in our scheme. It is easy to see that the collector can-
not link a report to the reporting node. Although task index
can be linked to its report and request token (as well as the
objects reachable from them via arrows in Fig. 7), it cannot be
linked to the node’s identity. Thus, the collector does not

Fig. 4. The linkability between different components. Rounded rectangles
(rectangles) denote the items transmitted with the node’s real identity
(random pseudonyms). The texts along solid arrows (dashed lines)
explain the reasonwhy the two connected items are linkable (unlinkable).
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know if a node has accepted or submitted reports for a given
task. Since report can only be linked to report token, and
report tokens used by the same node are generated indepen-
dently using partially blind signatures, the collector cannot
link multiple reports submitted by the same node. Since a
node’s request tokens are generated using its secret s1, the col-
lector cannot linkmultiple tasks accepted by the same node.

4.5.2 Attacks on Incentive

Without loss of generality, we consider a task i paid at a rate
of c credits, and analyze how the incentive goal is achieved.
Since request tokens and credit tokens are committed in the
setup phase, forgery of such tokens will fail and is not con-
sidered here.

Attacker acting alone. For an attacker, only one set of one
request token and C credit tokens can be committed to each
task. Also, the attacker cannot use the request token, report
token, and receipts of task j to earn credits from another
task i, since those tokens have been committed to task j
either in the setup phase or through partially blind signa-
tures. As a result, the attacker can only use the set of one
request token and C credit tokens that it has committed to
task i to earn credits from task i. If the attacker is not
assigned the task, its request token is not tagged as approved;
if it is assigned the task but does not submit reports, it can-
not get receipts. In either case, it cannot obtain any credit
token in the Receipts Submission phase. If the attacker has
been assigned the task and submitted reports, it can earn c
credits as our protocol allows, but no more.

Attacker controlling other nodes. Suppose an attacker has
compromised some other nodes. Since each nodemust use its
real identity in the setup phase, the attacker can still have only
one set ofW request tokens and CW credit tokens committed
to its real identity for the task window. Since the TTP gener-
ates different secrets for different nodes, all credit tokens com-
mitted in the setup phase are different. Thus, the attacker
cannot deposit a credit token which has been committed to
another node to its own account. This means that stealing
credit tokens from compromised nodes does not help the
attacker earn more credits. From the commitment process, it
can be seen that, given a request token, the receipts submitted
with it and the credit tokens obtained are already determined
in the setup phase. Thus, even if the attacker can steal request
tokens and receipts from compromised nodes, these tokens
only lead to credit tokens already committed to those compro-
mised nodes, and this does not help the attacker earn more
credits either. As a result, compromising other nodes does not help
the attacker earnmore credits thanwhen it acts alone.

5 A TTP-FREE SCHEME

The collector uses a private key d to generate blind RSA sig-
natures, and it uses four private keys K1, K2, K3 and K4 to

generate partially blind signatures. These keys are issued
by a (possibly offline) certificate authority. Each node has
four secrets s1, s2, s3 and s4 which are generated by itself.
The keys and secrets do not have to change for different
task windows. Tokens are summarized in Table 2.

5.1 The Basic Scheme

Without loss of generality, we consider the first task win-
dow when describing our scheme (see Fig. 5).

5.1.1 Setup

Before any task in this task window is created, each node
connects to the collector using its real identity to get the
tokens and commitments for the tasks in this window.

For each task i (i ¼ 1; 2; . . . ;W ) in this window, the node
generates C random credit token identifiers

mij ¼ HðijHjðijs1ÞÞ; (8)

where j ¼ 1; 2; . . . ; C. The reason whym is computed in this
way will be explained later. The node will use these identi-
fiers to construct C credit tokens for processing task i. Spe-
cifically, each credit token consists of an identifier and the
collector’s RSA signature over the identifier, i.e.,
hmij; SIGdðmijÞi. Note that the node cannot obtain the signa-
ture until it has submitted reports for this task.

In this phase, the node commits to the collector that it
will use these credit tokens for task i. To do this at low com-
putation cost, the node builds an extended Merkle tree over
mi1, . . ., miC (see details in Section 5.2), and then obtains a
partially blind signature from the collector for the root t of
the hash tree, i.e., PBSK1

ði; tÞ. This signature is the commit-

ment to the C credit tokens. ht; i;PBSK1
ði; tÞi will also be

used as the node’s request token for task i.
The node also needs to bind these credit tokens to its

identity. To do this with low cost, the node builds an
extended Merkle tree (see Section 5.2) over all the CW credit
token identifiers of the tasks in the task window. Let a

denote the root of this tree. The node, say, Alice, sends
ha; Alicei to the collector.

In total, the node gets W partially blind signatures, one
for each task in the task window. It stores these signatures
to process the tasks in the window later.

5.1.2 Task Request

When the collector publishes task i, it also publishes n and c
(see Table 1). Suppose a node has retrieved task i. If it wants

TABLE 2
Tokens in the TTP-Free Scheme

Request Token ht; taskIndex;PBSK1
ðtaskIndex; tÞi

Report Token hg; taskIndex;PBSK2
ðtaskIndex; gÞi

Report Receipt hb; taskIndex;PBSK3
ðtaskIndex;bÞi

Credit Token hm; SIGdðmÞi

Fig. 5. The basic TTP-free scheme.
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to accept this task, it uses a random pseudonym to send a
request to the collector which includes its request token
for task i.

node ! collector : i; t;PBSK1
ði; tÞ: (9)

The collector verifies the signature PBSK1
ði; tÞ, and knows

that this is a correct request token for task i. If the collector
does not approve this request, it tags t as unapproved; other-
wise, it tags t as approved. In either case, the node cannot
use the request token again. In the case of approval, the
node can request n report tokens for task i. It generates n
random values g1, g2, . . ., gn, and obtains a partially blind
signature PBSK2

ði; gjÞ from the collector for each gj. Con-

ceptually, the signatures are sent in a message:

collector ! node : PBSK2
ði; g1Þ; . . . ;PBSK2

ði; gnÞ: (10)

Then the node gets n report tokens for task i, which are
hgj; i;PBSK2

ði; gjÞi for j ¼ 1; . . . ; n.

5.1.3 Report Submission

The node can submit one report using each report token. To
submit the jth (j ¼ 1; . . . ; n) report for task i, it uses a pseu-
donym to send the following message:

node ! collector : i; gj;PBSK2
ði; gjÞ; report: (11)

The collector verifies the signature PBSK2
ði; gjÞ and accepts

the report. Then it can issue a report receipt to the node.
Specifically, the node generates bj ¼ HðtjijnjjÞ and obtains

PBSK3
ði; bjÞ from the collector.

collector ! node : PBSK3
ði;bjÞ: (12)

Then the node gets a receipt hbj; i;PBSK3
ði;bjÞi.

5.1.4 Receipts Submission

After submitting n reports for task i, the node can collect n
receipts. After waiting for some random time, it can submit
these receipts to the collector to redeem c credits. For each
mij (j ¼ 1; . . . ; c), it computes a random blinding factor

zij ¼ HðijtjHjðijs2ÞjyÞ; (13)

where y is the smallest positive integer that makes zij rela-
tively prime to Q. It then computes

m0
ij ¼ mij � zeij modQ: (14)

From the hash tree rooted at t, the node gets the prooft for
miðcþ1Þ, . . ., miC , i.e., the tree elements showing that they are

included in the tree (see Section 5.2). Then it sends:

node !collector : i; t; ½hbl;PBSK3
ði; blÞi�l¼1;...;n;

Hcþ1ðijs1Þ; prooft; ½m0
i1; . . . ;m

0
ic�:

(15)

The collector does the following:

� It checks that t is an approved request token identi-
fier for i. This means the node has been assigned
task i.

� It verifies the n partially blind signatures. This means
the node has submitted n reports for task i.

� It verifies that bl ¼ HðtjijnjlÞ for l ¼ 1; . . . ; n. This is
to prevent an attack as discussed in Section 5.5.

� For each j 2 ½cþ 1; C�, it computes mij ¼ HðijHj�c�1

ðHcþ1ðijs1ÞÞÞ. Using prooft, it verifies that these C � c
credit token identifiers have been included in the
hash tree rooted at t (see Section 5.2).

� It checks that all these mij are different.2 The collec-
tor maintains a dynamic list of credit token identi-
fiers that have recently been revealed to it, which is
denoted by revealed-list. It also checks that all these
mij are different from those in revealed-list. The col-
lector adds thesemij to revealed-list.

If all these checks succeed, the collector signs on each of
m0

i1, . . .,m
0
ic using key d, and returns the signatures.

collector ! node : SIGdðm0
i1Þ; . . . ; SIGdðm0

icÞ: (16)

The node removes the blinding factor zeij modQ from each sig-
nature SIGdðm0

ijÞ and gets SIGdðmijÞwhich is the blind signa-

ture formij. In this way, it gets c credit tokens hmij; SIGdðmijÞi
for j ¼ 1; . . . ; c. Besides, the collector also issues to the node a
partially blind signature over a random value of the node’s
choice,which isPBSK4

ði; random-valueÞ.

5.1.5 Credit Deposit

After a node earns a credit token hm; SIGdðmÞi, it waits a
random length of time between 0 and T (see T in Section
4.3). Then it uses its identity, say, Alice, to deposit the token.
To show that the token is bound to Alice in the setup phase,
it also sends a proofa showing that m is in the hash tree
rooted at a

node ! collector : m; SIGdðmÞ;a; Alice; proofa: (17)

The collector verifies the signature and the proof (see proof
verification in Section 5.2), and checks that m is different
from those in revealed-list. Then it adds m to revealed-list,
and increases the node’s credit account by one.

5.1.6 Token Revealing

Since usually a node does not submit reports for all tasks
and not every task is paid at the rate of C credits, some of its
credit token identifiers that have been committed in the
setup phase are not used in credit tokens. To prevent a node
from reusing these identifiers to earn more credits than
allowed, each node is required to reveal its unused credit
token identifiers. (Note that those credit token identifiers
used in credit tokens can also been as revealed when the
credit tokens are deposited.)

There are two cases of revealing corresponding to
assigned tasks and unassigned tasks respectively. For a task
assigned to a node, the node reveals the unused m when
submitting report receipts to the collector (see Section 5.1.4),
and gets a token-revealing proof for the task, i.e., the par-
tially blind signature signed with key K4. For those tasks
not assigned to a node, the node maintains an unassigned

2. Normally, the probability that two m are identical is negligible,
because eachm is a result of the hash functionH.
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list, which records the indices of the tasks not assigned to it.
It reveals the credit token identifiers committed to each task
in this list in an anonymous communication session (one
session for each task). Specifically, the node simply sends to
the collector its random seed used to generate its m for this
task and the commitment for these m. The collector checks
that each of these m is different from those in revealed-list
and then adds it to revealed-list. Upon revealing, the collec-
tor issues a partially blind signature (signed with key K4) to
the node for the task, which serves as a proof that the node
has done token revealing for the task. To ensure that every
node performs token revealing, before a node is distributed
tokens for a new task window, the collector checks that the
node has collected token-revealing proofs for all the tasks
that (i) the node has been distributed tokens for and (ii)
have expired for a certain time T 0. Here T 0 is a grace period
for nodes to reveal token.

The unassigned list is maintained as follows. For a task
that a node has retrieved, the node adds the task into its
unassigned list if it does not want to accept the task, it wants
to accept the task but the task was removed from the active
task queue by the collector before it sends a request, or it
has requested the task but the request was not approved.
For a task index that the node does not see the correspond-
ing task in the active task queue (e.g., a task that has been
assigned to enough nodes and hence removed from the
queue before the node retrieves it), it also adds the task
index into its unassigned list.

When a node deposits a credit token hm; SIGdðmÞi, if the
collector finds that m has been revealed by another node as
an unused credit token identifier, it denies the deposit.
When a node reveals its unused m, if the collector finds that
m has been used by another node in a deposited credit
token, the collector can punish that node, e.g., decreasing
that node’s credit account by one which is equivalent to
reclaiming the credit token.

5.2 Extended Merkle Tree

In the setup phase, a node uses one hash tree rooted at t to
commit to its C credit token identifiers for each task, and it
uses another hash tree rooted at a to bind the CW credit
token identifers for the task window to its identity. This sec-
tion describes how the hash tree is constructed. Without
loss of generality, we only consider the first tree with C
credit token identifiers, and assume C is a power of 23.

Merkle tree [30] is a well-known technique to make effi-
cient commitment, but it is not secure to directly use it here.
Let us look at the example in Fig. 6a. Suppose only one
credit will be paid for a task i (i.e., hm1; SIGdðm1Þi). When a
reporting node submits report receipts to redeem the credit
(see Section 5.1.4), it reveals m2, m3, m4 to the collector, as
well as the proof that they are included in the tree. When
the standard Merkle tree is used, the proof includes h1, i.e.,
Hðm1Þ. Thus the collector can link h1 to task i. When the
node deposits the credit token hm1; SIGdðm1Þi later using its
real identity, the collector finds that h1 is the hash of m1.

Then it can link m1 to task i, and know that the node has
submitted reports for task i. This may cause privacy leak-
age. (Similarly, the tree rooted at a cannot use standard
Merkle tree.)

To address this problem, we propose an extended Merkle
tree (see Fig. 6b). In our construction, each mj (j ¼ 1; . . . ; 4)
has a sibling rj which is a random value (named pairing
value) generated by the node. mj and rj are included in the
tree in different ways. For instance, in Fig. 6b, leaf
h1 ¼ Hðm1Þ but leaf h2 ¼ Hð1jr1Þ. This is to prevent rj from
being used as a credit token identifier. Inner nodes of the
tree are computed in the same way as the standard Merkle
tree. The proof form2,m3, andm4 include h4, h6, h8 and h12.
When the node deposits the credit token hm1; SIGdðm1Þi,
the collector cannot link h12 to m1 since it does not know r1.
Thus, it does not know from which task this credit is earned.

To construct the tree for task i, a node uses its secret s3 to
generate the pairing values. Specifically, for mij (j ¼
1; . . . ; C) in Eq. (8), the corresponding pairing value rij is

rij ¼ HðijHjðijs3ÞÞ: (18)

The proof for miðcþ1Þ, . . ., mC in Equation (15) includes

Hcþ1ðijs3Þ (which is used to compute riðcþ1Þ, . . ., rC) and the

appropriate tree elements.
For the tree rooted at a, the credit token identifiers

should be randomly shuffled before constructing the hash
tree. Also, each node uses a different secret s4 to generate
the pairing values.

5.3 Token Removal

For a node, report token, report receipt and credit token
can be discarded after usage. The request token and
credit token identifiers for a task can be discarded after
the receipt submission phase if the node has submitted
reports for the task or after the token revealing phase oth-
erwise. The collector stores the ha; nodeIDi pair that each
node uses to bind its credit token identifiers of a task win-
dow until a duration of T has passed after the last unex-
pired task in the window expires.

5.4 Dealing with Joins and Leaves of Nodes

Suppose at the time of join and leave task i is the most
recently created task, and there exists an integer k such that
kW � i < ðkþ 1ÞW . If a node joins, it runs the setup phase
for tasks iþ 1, . . ., ðkþ 1ÞW . If a node leaves, it releases its
request tokens for task iþ 1 and later tasks so that the col-
lector can invalidate them. In both cases, no changes are
made to other nodes.

Fig. 6. The basic idea of our extended Merkle tree.

3. If C is not a power of two, each node can pad some known values
(e.g., 1) as the right-most leaves of the tree to make the number of leaves
a power of two, and prove that the padding values are included in the
tree.
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5.5 Security Analysis

This section analyzes how the goals on privacy and incen-
tive are achieved.

5.5.1 Attacks on Privacy

Fig. 7 shows the linkability between different tokens and
objects in our scheme. From the figure, it is easy to see that
the collector cannot link a report to the reporting node.
Although task index can be linked to its report and request
token (as well as the objects reachable from them via arrows
in Fig. 7), it cannot be linked to deposited credit tokens, tree
root a or the node’s identity. Thus, the collector does not
know if a node has accepted or submitted reports for a
given task. Since report can only be linked to report token,
and report tokens used by the same node are generated
independently using partially blind signatures, the collector
cannot link multiple reports submitted by the same node.
Since a node’s request tokens are generated independently
using partially blind signatures, it is impossible to link mul-
tiple tasks requested by the same node.

5.5.2 Attacks on Incentive

Attacker acting alone. In the setup phase for a task window,
each node (with its real identity) can bind one and only one
t (and C credit token identifiers that have been used to com-
pute t via an extended Merkle tree) to each task in the win-
dow. The node can also bind CW credit token identifiers to
its identity through another extended Merkle tree. Since the
binding happens before the node knows any task in the
window, the best strategy for the node is to bind to its

identity the credit token identifiers that it has committed to
each task through t, such that it has the capability to earn
credits from every task. Also, the node cannot use the
request token, report token, and receipts of task j to earn
credits from another task i, since those tokens have been
committed to task j through partially blind signatures. As a
result, the node can only use the set of one request token and
C credit tokens that it has committed to task i to earn credits
from task i. If the attacker is not assigned the task, it cannot
submit reports. If it is assigned the task but does not submit
reports, it cannot get any report receipt. In both cases, it will
not obtain any credit. Thus, an attacker that acts alone can-
not make our scheme fail to achieve the incentive goal.

Attacker controlling other nodes. Suppose an attacker has
compromised some nodes. Since each node must use its real
identity in the setup phase, similar to the analysis for attack-
ers acting alone, an attacker can only bind one set of request
token and credit token identifiers (m1, . . ., mC) to each task
and to its real identity even if it has compromised other
nodes. Moreover, the token revealing scheme ensures that
all credit token identifiers committed in the setup phase will
be revealed to the collector (because if the attacker or a com-
promised node does not reveal its credit token identifiers, it
will not get new tokens for future taskwindows), and the col-
lector checks that they are different. Thus, if a credit token
has been committed to a compromised node, even if the
attacker can steal the token from the node, it cannot deposit
the token to its own account. Given a request token, the
receipts submitted with it and the credit tokens obtained
are already determined in the setup phase due to the use of
one-way hash, extended Merkle tree, and the unforgeability
property of blind signature (see Fig. 5). Hence, request
tokens and receipts committed to a compromised node can
only lead to credit tokens committed to the compromised
node, and the attacker cannot use them to earn more credits.
Consequently, compromising other nodes does not help the
attacker earn more credits than when it acts alone.

6 COST EVALUATIONS

In this section, we analyze and evaluate the cost of our
incentive schemes. The cost of reading sensors and submit-
ting data is not analyzed here.

6.1 Cost Analysis

Cost at each node. Table 3 summarizes the computation,
communication and storage cost of the two schemes. The
cost induced by a task to a node depends on if the node is
assigned the task (i.e., if the node is approved to submit

TABLE 3
Each Node’s Computation, Communication, and Storage Cost per Task

Unassigned task Assigned task Average

Computation TTP-free 2 PBS + 4C H ð2þ 2nÞ PBS + cM.E. + 4C H ð2þ 2�nÞ PBS + �cM.E. + 4C H
TTP-based 2H 2n PBS + ðnþ 2ÞH + cHMAC 2�n PBS + ð2þ �nÞH + �cHMAC

Communication TTP-free Oð1Þ Oðnþ cþ logCÞ Oð� logC þ �nþ �cÞ
TTP-based Oð1Þ Oðnþ cÞ Oð�nþ �cÞ

Storage TTP-free OðCÞ Oðnþ CÞ Oð�nþ CÞ
TTP-based Oð1Þ Oðnþ cÞ Oð�nþ �cÞ

M.E. stands for modular exponentiation. � denotes the average fraction of tasks assigned to each node.

Fig. 7. The linkability between different components. Rounded rectangles
(rectangles) denote the items transmitted with the node’s real identity
(random pseudonyms). The texts along solid arrows (dashed lines)
explain the reasonwhy the two connected items are linkable (unlinkable).
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reports for the task). In both schemes, for an unassigned
task, the cost is low; for an assigned task, additional cost
comes from the process of submitting n reports and obtain-
ing c credits. In both schemes, the cost of an unassigned
task is much lower than that of an assigned task. To evalu-
ate the average cost per task, we use a parameter � to denote
the average fraction of tasks assigned to each node out of all
created tasks, and show the average cost in the table. In a
large system with many tasks, we expect that each node can
accept and be assigned only a small portion of tasks due to
its resource limitation. For example, a node living in New-
ark may not be able to answer the tasks that require loca-
tion-based data from New York. Thus, � is expected to be
very small, e.g., � � 1. As a result, the average cost will be
close to the cost for unassigned tasks.

Since hash function runs orders of magnitude faster than
partially blind signature and C can reach a few hundred or
even larger in practice (e.g., a task may be paid from 6 to
220 dollars in Gigwalk [34] which means C > 220), the
TTP-based scheme has much lower computation cost than
the TTP-free scheme especially for unassigned tasks.

As to storage cost, each node stores one secret and one
nonce in the TTP-based scheme, and stores C credit token
identifiers per task for some short time in the TTP-free
scheme (see Section 5.3). Hence the storage cost is low. If a
node has submitted reports for the task, it also stores report
tokens, receipts, and credit tokens for some short time. Since
modern smart phones usually have many gigabytes of stor-
age, the storage cost is not a big issue.

Cost at the collector. Note that � can also denote the aver-
age fraction of nodes that each task is assigned to. The com-
putation, communication and storage cost at the collector is
summarized in Table 4.

We give a rough estimate of the size of storage. In
the TTP-based scheme, the collector mainly stores
W ðN þ V ÞðC þ 1Þ commitments for the next W tasks. It also
stores CðN þ V Þ credit token commitments for each task
created in the past time window for T . Let us consider a
simple case. Suppose N ¼ 10; 000, V ¼ 1; 000, W ¼ 1; 000,
C ¼ 256, T ¼ 30 days and 100 tasks are generated per day.
Also, suppose SHA-256 is used as the hash function H, and
each task ID or node ID has 8 bytes. Then the storage at the
collector is about 400 GB. We expect that such storage cost
is not an issue for modern servers. In the TTP-free scheme,
the collector mainly stores the credit token identifiers of
recent tasks for some time. Expectedly the storage overhead
is even lower than the TTP-based scheme.

Cost at the TTP. In the TTP-based scheme, the TTP com-
putes C þ 3 hashes and 2C HMACs per task per node. Since
hash and HMAC are extremely efficient, the computation

cost is low. The TTP stores the secret keys of the collector
and each node and the nonce. The storage cost is also low.

6.2 Implementation

We have implemented our schemes in Java. Partially blind
RSA signature [35] is used as the PBS scheme, and SHA-256
is used as the hash functionH.

Based on the implementation, we measure the running
time of PBS, RSA signature, modular exponentiation, hash,
and HMAC on Android Nexus S Phone (Android 4.0.4 OS,
1 GHz CPU and 512 MB RAM) and a laptop (Windows 7
OS, 2.6 GHz CPU and 4 GB RAM). The results are shown in
Table 5. Note that, when generating a partially blind signa-
ture, the operations at node and collector are different. Then
we calculate the running time of the two schemes according
to Tables 3 and 4. Here, we set C ¼ 256 and � ¼ 0:01. For n
and c, we consider four extreme cases which correspond to
four typical types of tasks with varying numbers of reports
and credits: n ¼ c ¼ 1 (Type I), n ¼ 1; c ¼ 256 (Type II),
n ¼ 256; c ¼ 256 (Type III), and n ¼ 256; c ¼ 1 (Type IV).
Table 6 shows the results in running time. We found that in
the TTP-free scheme, when � is small, hash operations
become a significant source of running time. However, it
can be seen that the running time of both schemes is very
short in all four types of tasks. The TTP-based scheme runs
at least one order of magnitude faster than the TTP-free
scheme at each node (on the smartphone), due to the use of
more efficient cryptography primitives such as hash and
HMAC. For similar reasons, it also runs faster at the collec-
tor (on the laptop).

To study the feasibility of our schemes, we also measure
the power consumption of the TTP-free scheme on Nexus S
phone using Monsoon Power Monitor. Here, the TTP-free
scheme is measured since it has higher power consumption
than the TTP-based scheme. In this group of experiments, a
Nexus S Phone runs the whole life cycle of one task for 100
tasks. In this process, the smartphone connects to a laptop
(Windows 8.1 OS, 2.4 GHz CPU, and 4 GB RAM) with TCP
over WiFi, launching a new TCP connection for each phase.
Each data report has 8 bytes, which is of similar size as an
accelerometer, temperature, noise and GPS reading. The
results are shown in Table 7. It can be seen that the energy
consumption of our scheme is very low. When � ¼ 0:01, it is

TABLE 4
The Collector’s Average Computation (cmp), Communication

(cmm), and Storage (sto) Cost Per Task Per Node

cmp TTP-free ð2þ 2�nÞPBS +�c SIG +�ðC � cÞM.E. +3C H
TTP-based 2�n PBS + ðcþ ðnþ 1Þ�ÞH + �HMAC

cmm TTP-free Oð� logC þ �nþ �cÞ
TTP-based Oð�nþ �cÞ

sto TTP-free Oð�nþ CÞ
TTP-based Oð�nþ CÞ

TABLE 5
The Running Time of Cryptographic Primitives

PBS SIG M.E. H HMAC

Phone 4.2 ms - 1.7 ms 0.08 ms 0.024 ms
Laptop 4.0 ms 1.6 ms 0.1 ms 0.001 ms 0.003 ms

TABLE 6
The Average Running Time of Processing a Task

Type I Type II Type III Type IV

Node TTP-free 90 ms 95 ms 116 ms 112 ms
TTP-based 0.25 ms 0.31 ms 22 ms 22 ms

Collector* TTP-free 10 ms 14 ms 37 ms 33 ms
TTP-based 0.08 ms 0.34 ms 21 ms 21 ms

�The time is needed to process a task for each node.
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only 0.25-0.29 Joules per task on average. Such low con-
sumption allows a fully-charged battery (3.7 V, 1,500 mAh)
of Nexus S phone to support more than 68 thousand of tasks
before being depleted.

7 DISCUSSIONS

Relaxing the TTP assumption. In the TTP-based scheme, the
trusted third party can be replaced with an honest-but-curi-
ous third party which does not collude with the collector or
any node. Although following our protocol, such a third
part tries to infer private information from the the protocol
transcript and through eavesdropping communications.
Under this semi-honest model, the only change to make is
that all communications between the collector and nodes
should be encrypted.

Supporting report-based payment. In the schemes described
above, a node gets paid after it submits all the n reports for
a task. In practice, a node may only be able to generate less
than n reports for the task. In such scenarios, the collector
can flexibly determine the number of credits paid to the
node (e.g., based on the number of receipts that the node
has) and issue pseudo-credits accordingly.

Greedy attacks. In our schemes, after a node retrieves a
task, it waits a random time before requesting the collector
to assign the task to it. This is to protect the privacy of the
node. However, a greedy node that does not care about its
privacy may continuously retrieve tasks and request a task
immediately after retrieval, in order to have a better chance
to be assigned the task. Such behavior may prevent other
nodes from earning credits. To mitigate it, the collector can
select each requesting node with a certain probability. Note
that if a node’s request is not approved, its request token is
invalidated and it cannot submit a request again. Since each
node only has one request token for each task, sending the
request early does not give it much privilege.

Isolation attacks. In isolation attacks, the collector issues
the commitments for the next task window to only one
node. As a result, when the reports for these tasks are sub-
mitted, the collector knows that these reports must be sub-
mitted by that node. To thwart this attack, one possible
solution is that each node generates a signature for the task
window and sends it to the collector. Each node checks that
the collector has collected signatures from sufficient nodes
before it submits a report for a task.

Credit balance based inference attacks. The collector may be
able to infer if a node has accepted a task from the number
of credits that the node has earned. For instance, suppose
the collector has published 100 tasks, each of which is paid
at a rate of one credit per task. If a participant Bob has

earned 100 credits, the collector can infer that Bob has sub-
mitted reports for every task. If one of the tasks is “Report
the temperature at 10:00 AM in Central Park,” the collector
knows that Bob is in Central Park at 10:00 AM. To launch
this attack, the collector may create multiple tasks that
require the node to appear at close-by times (e.g., 10:01 AM)
and locations. In the above example, suppose 51 tasks
require a temperature reading near Central Park around
10:00 AM. If Bob has earned 50 credits, at least one credit is
earned from those 51 tasks. Thus the collector knows that
Bob is near Central Park around 10:00 AM.

To address this attack, each node should carefully select
the tasks that it will accept and limit the number of accepted
tasks. One possible approach is as follows. Among the tasks
that it is able to report for, the node identifies the “similar”
tasks which may reveal the same privacy information about
it (e.g., its location around a certain time). For each group of
similar tasks, it accepts one of them with a certain probabil-
ity (e.g., 0.5). This ensures that the number of its accepted
tasks does not exceed the number of similar-task groups.
From the number of credits earned by a node, the collector
does not know which tasks the node has reported for, and
thus cannot infer any private information about the node.
Since each node intentionally omits some tasks, this
approach sacrifices some chances of earning credits for bet-
ter privacy. Due to the space limitation, we will explore this
topic in future work.

Data forgery attacks. Malicious nodes may submit fake
sensing data to earn credits. To mitigate this attack without
breaking privacy, anonymous reputation schemes have
been proposed in the literature [9], [12] to filter the data sub-
mitted from low-reputation nodes. Another possible
approach is that each user generates a group signature [36]
and attaches it to his data report. If a report is detected as
bad data, the collector can resort to a trusted authority to
recover the identity of the data source from the group signa-
ture. However, these approaches rely on an online TTP for
privacy protection. When online TTP is not available, how
to mitigate data forgery attacks without violating privacy is
still an open research problem and will be explored in our
future work.

8 RELATED WORK

Many solutions [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]
of protecting user privacy have been proposed in mobile
sensing. Among them, AnonySense [5], [6] and PEPSI [8]
provide frameworks for anonymous data collection. Several
studies [37], [38], [39], [40], [41] address privacy-aware data
aggregation. Christin et al. [9] andWang et al. [12] proposed
privacy-aware reputation schemes that employ reputation
to filter incorrect sensor readings. DeCristofaro and Di Pie-
tro, [42] consider a scenario where external entities query
specific users’ data and study how to hide which user
matches a query. TPM is also used to protect user data [10].
However, none of these privacy protection schemes consid-
ers incentives. Many incentive schemes [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28] have been
designed for mobile sensing to pay user credits based on
gaming and auction theories, but they do not consider pro-
tection of privacy.

TABLE 7
The TTP-Free Scheme’s Power Consumption on Phone

Type I Type II Type III Type IV

Unassigned task 0.25 J 0.25 J 0.25 J 0.25 J
Assigned task 0.27 J 0.5 J 4.2 J 4.1 J
Average (� ¼ 0:01) 0.25 J 0.25 J 0.29 J 0.29 J
#Tasks per battery* 79,920 79,920 68,897 68,897

�Num. of tasks that a fully-charged battery (3.7 V, 1,500 mAh) for Nexus
S phone can support (calculated from avg. consumption)
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It is nontrivial to simultaneously address incentive and
privacy. Blind signature [31], [32] has been widely used
in anonymous electronic payment systems and digital
currency, and it is natural to use blind signature to imple-
ment privacy-preserving credits. However, direct use of
blind signature does not work either, since a malicious
user can compromise other users, steal their credits, and
spend the credits without being detected. Note that a
blind signature cannot be linked to any specific user. Sim-
ilar problems exist for other anonymous credential sys-
tems (e.g., [43], [44], [45]). Privacy and incentive are
studied in an advertisement system [46], but the scheme
cannot be applied to mobile sensing due to different sys-
tem settings. Privacy-preserving mechanism design and
auctions (e.g., [47], [48]) aim to protect participants’ types
and valuations of a good, but they do not protect partic-
ipants’ interest in the good. Hence they cannot be directly
applied to mobile sensing to protect users’ interest in
sensing tasks.

Our previous work [29] also adopts a token and commit-
ment based approach for providing privacy-aware incen-
tives in mobile sensing, but it only supports single-report
tasks. This paper significantly extends the sensing protocol
and cryptographic constructions to support multiple-report
tasks. Compared with the preliminary conference version
[49], this paper adds a new TTP-based incentive scheme
(see Section 4) and provides evaluation results.

9 CONCLUSIONS

To promote user participation, we proposed two credit-
based privacy-aware incentive schemes for mobile sensing,
corresponding to scenarios with and without a TTP respec-
tively. Mainly based on hash and HMAC functions, the
TTP-based scheme has very low computation cost at each
node. Based on blind signature, partially blind signature,
and extended Merkle tree techniques, the TTP-free scheme
has higher overhead than the TTP-based scheme but it
ensures that no third party can break user privacy. Both
schemes can efficiently support dynamic joins and leaves.
Implementations show that both schemes have short run-
ning time and lower power consumption.
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