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Abstract— The existing time synchronization schemes in sensor
networks were not designed with security in mind, thus leaving
them vulnerable to security attacks. In this paper, we first
identify various attacks that are effective to several representative
time synchronization schemes, and then focus on a specific type
of attack called delay attack, which cannot be addressed by
cryptographic techniques. Next we propose two approaches to
detect and accommodate the delay attack. Our first approach uses
the generalized extreme studentized deviate (GESD) algorithm to
detect multiple outliers introduced by the compromised nodes;
our second approach uses a threshold derived using a time
transformation technique to filter out the outliers. Finally we
show the effectiveness of these two schemes through extensive
simulations.

I. I NTRODUCTION

Many sensor network applications require time to be syn-
chronized within the network. Examples of such applications
include mobile object tracking, data aggregation, TDMA radio
scheduling, message ordering, to name a few. Consider the
application of mobile object tracking [1], in which a sensor
network is deployed in an area of interest to monitor passing
objects. When an object appears, the detecting nodes record
the detecting location and the detecting time. Later, these
location and time information are sent to the aggregation node
which estimates the moving trajectory of the object. Without
an accurate time synchronization, the estimated trajectory of
the tracked object could differ greatly from the actual one.
Similarly, we can see the importance of time synchronization
for the operations of other sensor network applications.

All network time synchronization methods rely on some
sort of message exchanges between nodes. Nondeterminism
in the network dynamics such as physical channel access time
or operating system overhead (e.g., system calls), makes the
synchronization task challenging in sensor networks. In the
literature, many schemes have been proposed to address the
time synchronization problem [2], [3], [4], [5], [6]. These
schemes involve the exchange of multiple time synchroniza-
tion messages among multiple sensor nodes [2] or between two
sensor nodes [3] to be synchronized. However, none of them
was designed with security in mind, even though security has
been identified as a major challenge for sensor networks [7].
Actually, even if an adversary is capable of destroying someor
all sensor nodes, it may opt for other more severe attacks, since
it is more dangerous to take actions based on some false sensor

data than without any data. For example, if an adversary can
attack the time synchronization protocol so that the estimated
direction of a mobile object is contrary to its actual direction,
a wrong or even risky action may be taken and many system
resources may be wasted. Thus, when a sensor network is
deployed in an adversarial environment such as a battlefield,
the time synchronization protocol is an attractive target to the
adversaries.

In this paper, we first identify several security attacks an ad-
versary can launch against a non-secure time synchronization
protocol. For instance, an attacker can replay old synchroniza-
tion messages, drop, modify, or even forge exchanged timing
messages. Since many of these attacks can be addressed by
employing appropriate cryptographic techniques, we focuson
a specific type of attack calleddelay attack, which cannot be
addressed by the cryptographic techniques. In the delay attack,
a malicious attacker (or a compromised node) deliberately
delays the transmission of time synchronization messages to
magnify the offset between the time of a malicious node
and the actual time. All the current time synchronization
schemes [2], [3], [4], [5], [6] are vulnerable to this attack
in one way or another.

We propose two approaches to detect and accommodate the
delay attacks. Our first approach uses the generalized extreme
studentized deviate (GESD) algorithm to detect the outliers
introduced by malicious nodes. If there is no malicious node,
the time offsets among the sensor nodes should follow the
same (or similar) distribution or pattern. For their attacks
to be effective, malicious nodes typically report their time
offsets much larger than those from the benign nodes, leaving
their reported values suspicious. Our second approach usesa
time transformation technique, which enables every node to
derive an upper bound of the time offset that is acceptable
to it, thereby filtering out the outliers. We discuss the merits
as well as the limitations of each approach, and evaluate
the effectiveness of these two schemes through extensive
simulations.

The rest of the paper is organized as follows. The next
section describes the related work and discusses various at-
tacks which are addressable using cryptographic techniques. In
Section III, we identify and discuss a new attack calleddelay
attack. Section IV presents the system model and assumptions.
In Section V, we present the GESD-based approach. Section



VI presents the threshold-based approach. The performance
of these two approaches are evaluated in Section VII. Section
VIII concludes the paper.

II. RELATED WORK

A. Time Synchronization in Hostile Environments

All of the current time synchronization protocols [2], [3],
[4], [5], [6] become vulnerable in hostile environments. Taking
the RBS scheme as an example, an attacker may launch
different kinds of attacks to break the protocol. The first attack
is called masquerade attack. Suppose nodeA sends out a
reference beacon to its two neighborsB and C. An attacker
E can pretend to beB and exchange wrong time information
with C, disrupting the time synchronization process between
B and C. A second attack is calledreplay attack. Using the
same scenario in the first attack, an attackerE can replay
B’s old timing packets, misleadingC to be synchronized to
a wrong time. A third attack is calledmessage manipulation
attack. In this attack, an attacker may drop, modify, or even
forge the exchanged timing messages to interrupt the time
synchronization process. For the message dropping attack,
the attacker can selectively drop the packets to prolong the
converging time of the synchronization process. This attack
could be difficult to detect. For the message forging attack,
the attacker can forge many reference beacon messages and
flood the network. On one hand, it breaks time synchronization
among the neighbors. On the other hand, it causes those nodes
to consume power to process these unwanted and faked timing
messages. If some of the nodes are power-deprived, some
holes or even partition may appear in the network.

We can certainly employ some cryptographic techniques to
address the aforementioned attacks. For example, providing
authentication of every exchanged message will prevent an
outside attacker from impersonating other nodes or altering the
content of an exchanged message. Adding a sequence number
to beacon messages or other messages will prevent message
replay attacks. Message dropping may be noticed by some
misbehavior detection schemes [8].

B. Fault-Tolerance Time Synchronization

The time synchronization problem has been studied for
many years and most of the previously proposed approaches
fall into the general field of fault-tolerance time synchroniza-
tion [9], [10], [11], [12]. Our proposed schemes differ from
these schemes in several ways. First, in [10], [11], [12], it
was assumed that two nonfaulty clocks never differ by more
than a predefined thresholdδ. However, how to define this
threshold is not discussed. In our second scheme, we use
the time transformation technique to derive the threshold.Our
first scheme do not have this assumption at all. Second, the
scheme of [9] requires an authentication mechanism such as
digital signatures to ensure that no other node can generate
the same message or alter the message without detection. Our
schemes do not have this requirement. In fact, our schemes
are addressing a new attack, called delay attack, which can
not be prevented or handled by cryptographic techniques such

as digital signatures, because we assume that nodes may be
compromised.

III. T HE DELAY ATTACK MODEL

The time synchronization schemes proposed for wireless
sensor networks are based on two models: the receiver-receiver
model and the sender-receiver model. The reference broadcast
synchronization scheme (RBS) [2] and its prototype protocol
[13] fall into the receiver-receiver model. In the following, we
simply use the RBS scheme to represent the receiver-receiver
model. Schemes of the sender-receiver model include TPSN
[3], LTS [4], the tiny-sync and mini-sync schemes [5], and the
global time synchronization protocol [6]. In the following, we
will describe the delay attack model in the context of the RBS
scheme [2], which is based on the following idea: using a third
party for time synchronization. A node, which is a regular node
acting as areferencenode, broadcasts a reference beacon to
its neighbors. Each neighboring node records the arrival time
of the beacon based on its own clock. Since these receiving
nodes are close to the reference node, we can assume the
beacon arrives at both receivers at the same time. Therefore,
the difference between the recording times of these receiving
nodes is the time offset between them. By exchanging their
recorded receiving times, they can calculate the time offset,
adjust and synchronize their clocks. As shown in Figure 1(a),
nodesA andB have the recorded timesta andtb, respectively,
and the time offset between them isδ = ta−tb. To synchronize
with nodeA, nodeB may increase its clock byδ, or both of
them set their clocks to(ta + tb)/2.
Next we introduce a new attack model against the RBS
scheme.

Definition 1 (Delay Attack): In a delay attack, an at-
tacker deliberately delays some of the time messages, e.g.,
the beacon message in the RBS scheme, so as to fail the time
synchronization process.

Figure 1(b) and (c) show two ways to launch the delay
attack in the RBS scheme. In Figure 1(b), two colluding nodes
act as the reference node for nodesA andB. They send the
reference beaconb to nodesA andB at different times. As a
result, nodesA andB receive the beacon messages at different
times, but they assume they receive the beacon at the same
time. Figure 1(c) shows that a malicious node can launch
the above attacks alone if it has a directed antenna [14] so
that nodesA and B only hear one beacon message. The
delay attack can also be launched when a benign node is
synchronizing with a compromised node. The compromised
node can add some delay to the beacon receiving time and
send it the good node. This will mislead the good node to
synchronize to a wrong time.

The sender-receiver model protocols [3], [4], [5], [6] are also
vulnerable to the delay attack. In the sender-receiver model,
the sender and the receiver exchange time synchronization
packets, estimate the round-trip transmission time between
them, and synchronize their clocks after finding the clock
offset between them. Since only two nodes are involved in
the process, this model does not suffer from the attacks
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Fig. 1. The RBS scheme and the delay attack

introduced by a malicious reference node. However, a node
can be deceived if the node it is synchronizing with is
malicious. Therefore, these schemes are also subject to the
aforementioned delay attacks.

IV. SYSTEM MODEL AND ASSUMPTIONS

A. Node, Network, and Security Assumptions

We consider a sensor network composing of resource-
constrained sensor nodes such as the current generation of
Berkeley Mica motes [15]. Every sensor node is equipped
with an oscillator assisted clock and powered by an external
battery. The clock of a sensor starts to tick only after it is
powered on. Since it is unlikely to power on all the sensor
nodes at the same time, there may be large time offsets
among sensor nodes initially. We assume that the sensor nodes
deployed in a security critical environment is manufactured
to sustain possible break-in attacks at least for a short time
interval (say several seconds) when captured by an adversary
[16]; otherwise, the adversary could easily compromise allthe
sensor nodes and then take over the network. To this end, we
assume that there exists a lower bound on the time interval
Tmin that is necessary for an adversary to compromise a sensor
node. We assume that the first time synchronization will be
executed and finished within the time intervalTmin. As a
result, we can assume that all the sensor nodes are loosely
synchronized.

Because of intrinsic clock drifts of sensor nodes, the time
offsets among sensor nodes could become very large (e.g., in
the order of seconds or even larger) unless time synchroniza-
tion is performed once in a while. Hence, we assume that time
synchronization is performed periodically.

Each node is assigned a unique id before deployment and it
can authenticate the messages sent/received with appropriate
shared keys established through a key management proto-
col [16], [17], [18]. This ensures that no node can impersonate
others during the exchange of timing messages and a malicious
node can act as a reference at most once.

Note that the presence of jam-and-replay attackers can
incur extra delay to any well-behaving node’s transmission
in its neighborhood. As a result, a well-behaving node may
be misidentified as compromised. In this paper, however, we
assume that we can utilize jamming attack detection schemes,
such as [19], to detect and remove the jam-and-replay attack-
ers.

B. Models for Secure Time Synchronization
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Fig. 2. Two models for secure time synchronization

The general idea of defending against delay attacks is as
follows. After collecting a set of time offsets from multiple
involved nodes, we identify the malicious time offsets that
are due to delay attacks. The identified malicious time offsets
will be excluded and the rest of the time offsets are used to
estimate the actual time offset. Next, we present two models
for collecting the time offsets: the two-node model and the
neighboring-node model, which are described in the context
of the RBS scheme.

The two-node model: In this model, one node needs to
synchronize with another node. For example, in Figure 2(a),
nodeB is the cluster head andA is a node within the cluster.
All nodes in the cluster are required to synchronize withB.
Due to security concerns, nodeA only trusts the cluster head
but not other nodes in the cluster. However, it has to use
other nodes as reference nodes when using RBS. To deal
with security attacks on time synchronization, nodeA uses
multiple reference nodes to obtain a set of time offsets. For
example, it can requestR1, R2,... Rn to serve as reference
nodes. Let〈tia, tib〉 represent the two beacon receiving times
obtained by using a reference nodeRi andδi = (tia−tib) be the
time offset betweenA andB. NodeB obtainsn time offsets
{δ1, δ2, . . . , δn}. Based on the collected time offsets, we can
detect and exclude the malicious time offsets and estimate the
actual time offset betweenA andB more accurately.

The neighboring-node model:In some applications, a node
may be required to synchronize with its neighbors to cooperate
with each other. In this case, the two-node model is not



enough since some neighbors may have been compromised
and synchronizing with a malicious node is more vulnerable
to attacks. Our solution is illustrated in Figure 2(b). Suppose
A hasn neighbors:R1, R2, . . . , Rn. We run the RBS scheme
betweenA and each of its neighbors and each time we use
a different node as reference to obtain a time offset. After
collecting n time offsets, we can detect the outliers, exclude
them, and make a good estimation on the actual time offsets.

In addition to the above two models, other models are
possible. These models have one thing in common: they collect
a set of time offsets, which may include malicious time offsets.
The focus of this paper is to answer the following question:
Given a set of time offsets, how to identify the outliers and
how to achieve an attack-resilient estimation?In this paper, we
propose solutions in the context of RBS, although the solutions
can also be applied to the sender-receiver based model.

V. THE GESD-BASED DELAY ATTACK DETECTION

Intuitively, without delay attacks, the time offsets among
nodes follow a similar distribution. The existence of delay
attacks makes the malicious time offsets much different from
the others; otherwise, the attack is not effective and can be
tolerated by the time synchronization schemes. In statistics,
these malicious time offsets are referred to asoutliers, which
is defined as “an observation which deviates so much from
other observations as to arouse suspicious that it was generated
by a different mechanism” [20]. Numerous schemes have
been proposed to detect outliers [21] (see [21] for a survey).
Among them, the generalized extreme studentized deviate
many-outlier procedure (GESD) [22] is proved to perform well
under different conditions [21]. In the following, we introduce
GESD and discuss how to apply it to our problem. After the
outliers have been identified by GESD, we discuss how to
exclude the outliers and obtain a more accurate estimation of
the time offset.

A. The GESD Many-Outlier Detection Procedure

Before introducing GESD, let us first look at the extreme
studentized deviate (ESD) test which is also called the Grubb’s
test. The ESD test is good at detecting one outlier in a random
normal sample.

Definition 2 (ESD Test): Given a data set Γ =
{x1, x2, . . . , xn}, The mean of Γ is denoted asx̄ and
the standard deviationof Γ is denoted ass. Let

Ti = |xi − x̄|/s, wherei = 1, . . . , n.

Ti is also called the correspondingT -value of xi. Let xj be
the observation that leads to the largest|xi − x̄|/s, wherei =
1, . . . , n. Then xj is an outlier when Tj exceeds a tabled
critical value λ.

In principle, if Tj does not exceed the critical valueλ, we
need not single outxj . Assuming this test finds an outlier, we
then look for further outliers by removing observationxj and
repeating the process on the remainingn − 1 observations.
However, the ESD test can only detect one outlier.

GESD is a modified version of the ESD test, which can find
multiple outliers. Two critical parameters for GESD arer and
λi, wherer is the estimated number of outliers in the data set
andλi is the two-sided100∗α percent critical value got from
Formula (1).

λi =
tn−i−1,p(n − i)√

(n − i − 1 + t2n−i−1,p)(n − i + 1)
(1)

In Formula (1),i = 1, . . . , r. tv,p is the100 ∗ p percentage
point from thet distribution with v degrees of freedom, and
p = 1− [α/2(n− i+1)]. Givenα, n andr, the critical values
λi, wherei = 1, . . . , r, can be calculated beforehand.

B. Using GESD for Delay Attack Detection

The GESD-based approach is formally defined as follows.
Definition 3 (GESD-based delay attack detection):

Given the time offset setΓ = {δ1, δ2, . . . , δn}, all the time
offsetsδi that are identified as outliers by GESD are claimed
to be under delay attack.

In GESD,r is the number of estimated outliers in the data
set, which is the estimated number of malicious time offsets
in our settings. The choice ofr plays an important role in
GESD. If r is set to a small number and there are more than
r malicious time offsets among then time offsets, some of
them cannot be detected using GESD. On the other hand, if
r is too large, it wastes time on checking the nodes that are
in fact benign (good) ones. In this paper, since the number of
time offsets is small (e.g., 20), we setr to be half of the total
number of time offsets. We also assume that the number of
malicious time offsets is less than half of the total number of
time offsets. Without this assumption, GESD may not work
since it may find the malicious time offsets to be benign and
the benign ones to be malicious.

Definition 4 (Estimate r): Let the median of the time off-
set setΓ be x̂ and s be the standard deviation.r is defined
as the number of time offsetsxj such that |xj − x̂|/s >
2, wherei = 1, . . . , n.

When the number of malicious nodes is small, i.e, less than
5% of the total, we can utilize the median of the time offsets to
setr. As shown in Definition 4,r is the number of time offsets
that are two standard deviations away from the median. In
most cases, the data and time offsets are normally distributed,
and 95% of the values are at most two standard deviations
away from the mean. In our case, we replace the mean with
the median since the median serves better when there exists
malicious data sets.

Figure 3 shows how to use GESD to identify outliers. The
algorithm accepts three parameters: the estimated number of
outliers r, the time offset data setΓ, and the critical valueλ
computed by Formula (1).λ can be pre-computed and stored in
the sensors. In the following, we useλn to denote the critical
values for a data set withn elements. Two array structuresC
and T , are used to save the candidate outlier information.C
is used to keep the outliers andT is used to save theT value
(Definition 2) corresponding to the candidate outliers. TheT



Algorithm 1: Input: r, Γ, λ
0 let j = 1, C andT be two arrays
1 begin loop
2 calculatex ands over setΓ; find xkj

which maximizes|xi − x̄|, xi ∈ Γ;
3 let T [j] = {|xkj

− x̄|/s}, C[j] = xkj
;

removexkj
from Γ;

4 increase j; decreaser;
5 if (r < 1) break
6 end loop
7 let outlier setΩ = ∅, j = r;
8 begin loop
9 if (T [j] > λn[j]) {Ω = ∪{C[k]},

k = 1, . . . , j; return Ω}
10 else{decreasej; if (j < 1) return ∅}
11 end loop

Fig. 3. Identifying outliers with GESD

values of the candidate outliers are later used to compare with
the critical values to decide whether the candidates are outliers
or not.

C. Delay Attack Accommodation

The goal of securing time synchronization is to synchronize
the time in the presence of delay attacks. This can be achieved
by first identifying the outliers (malicious time offsets) and
then excluding them when estimating the true time offsets
between nodes. We use the mean of the benign time offsets
to approximate the true time offsets. The following definition
can be used to approximate the time offset estimationδ̂.

Definition 5 (Estimate δ̂): Let Γ be the time offset data
set andΩ be the outlier set. Then the benign time offset set is
Γ−Ω. δ̂ is defined as the mean of the setΓ−Ω. Let the size
of Γ be n and the size ofΩ be k. δ̂ is calculated as follows.

δ̂ =
n−k∑

i=1

xi

n − k
,where xi ∈ Γ − Ω.

VI. T HRESHOLD-BASED DELAY ATTACK DETECTION

One drawback of the GESD approach is that it needs to have
enough reference nodes to detect the malicious nodes effec-
tively. This has been verified by the simulation results shown in
Section VII-B. In this section, we propose a threshold-based
approach to detect the delay attacks based on the following
observations. Without delay attacks, the time offset between
two nodes should be bounded by a threshold value if the
maximum clock drift rates can be bounded. With the threshold
value, we can identify those time offsets that are larger than
the threshold as malicious ones. Different from GESD, the
threshold-based approach does not need that many reference
nodes. Moreover, the threshold-based approach only needs to
calculate the threshold once, and thus has less overhead.

In the following, we first present the time transformation
technique, which was first proposed in [23]. Then, based on
the time transformation technique, we present a method to
determine the threshold. After determining the threshold,we
discuss how to use it to defend against delay attacks.

A. The Time Transformation Technique

Before presenting the time transformation technique, let us
first look at the hardware oscillator assisted clock in Berkeley
Mica motes [15], which implements an approximationC(T )

of the actual timeT . C(T ) = k
∫ T

T0

ω(η)dη + C(T0) is a
function of the real timeT , which derives from the angular
frequencyω(T ) of the hardware oscillator. In this formula,k
is a proportional coefficient andT0 is the initial clock value.

For a perfect hardware clock,dC

dT
is equal to one. However,

all hardware clocks are not perfect since they are subject to
clock drift. We can only assume that the clock drift rate of the
sensor clock does not exceed a maximum value ofρ. Thus,
we have the following inequality:1 − ρ ≤ dC

dT
≤ 1 + ρ.

The idea of time transformation is to transform the real
time difference ∆T into the sensor clock difference∆C

and vice versa. These transformations are difficult because
of the unpredictability of the sensor clock, but there exists
some lower and upper bounds on the estimates. Based on
the previous inequality, we can get:1 − ρ ≤ ∆C

∆T
≤ 1 + ρ.

This inequality can be transformed into(1 − ρ)∆T ≤ ∆C ≤
(1 + ρ)∆T and ∆C

1+ρ
≤ ∆T ≤ ∆C

1−ρ
, which means that the

clock difference∆C can be approximated by the interval
[(1 − ρ)∆T , (1 + ρ)∆T ]. On the other hand, the real time
difference∆T that corresponds to the sensor clock difference
∆C can be approximated by the interval[ ∆C

1+ρ
, ∆C

1−ρ
].
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In order to transform a time difference∆C1
corresponding

to one nodeN1 with ρ1, to a time corresponding to another
node N2 with ρ2, ∆C1

is first estimated by the real time
interval [

∆C1

1+ρ1

,
∆C1

1−ρ1

], which in turn is estimated by the sensor
clock time interval[ 1−ρ2

1+ρ1

∆C1
, 1+ρ2

1−ρ1

∆C1
], relative to the local

time of nodeN2. As shown in Figure 4, nodesA andB use
RBS to do time synchronization. The maximum clock drift
rates of A and B are denoted asρa and ρb, respectively.
SupposeA and B receive the reference beacon at timeta
and tb, in terms of their own local clocks, respectively. After
receiving the reference beacon, at timet1, A sends a message
M to B, telling B that it received the beacon at timeta.
MessageM is received byB at time t3, and thenB sends
back anAck at time t4 to confirm that it has receivedM .
In the Ack, B piggybackstb, t3, and t4. After receiving the
Ack, A can use the time transform technique to transform the
beacon receiving timetb to a time interval[tbL, tbR] relative
to A’s clock. tbL and tbR are calculated using Formula 2.



tbL = t2 − (t4 − tb)
1+ρa

1−ρb
− ((t2 − t1) − (t4 − t3)

1−ρa

1+ρb
)

tbR = t2 − (t4 − tb)
1−ρa

1+ρb

(2)

B. Determining the thresholdξ

The thresholdξ is the upper bound of the time offsets
between two nodes. We determineξ based on the idea of
time transformation shown above. Different from the original
paper, where the time interval is used to order messages, we
utilize the time interval to quantify the time offset upper bound
between two nodes. In addition, unlike [23] where the time
transformation happens along multiple hops, we only need to
do the time transformation within a single hop. As a result,
the interval we get has less error accumulation than that in
[23].

A straightforward solution is to use (tbR − tbL) as ξ.
However, (tbR − tbL) is a tight bound. If we use it to decide
whether a time offset is malicious or not, it may identify
benign time offsets as malicious ones. Thus, to effectively
detect malicious time offsets,ξ should be a looser upper
bound. SincetbL and tbR are the two boundaries of timetb
at nodeA, max(|ta − tbL|, |tbR − ta|) should be the upper
bound of the time offsets betweenA and B. Based on this
observation, the time offset upper bound,ξab, betweenA and
B can be determined by Formula (3), which is a looser upper
bound compared to (tbR − tbL). This can be explained as
follows. If the clock drift rates of the two nodes are equal,ta
should fall inside [tbL, tbR]; otherwise,ta may fall outside of
[tbL, tbR], leading to a looser upper bound based on Formula
(3). Since the clock drift rates of two nodes are usually not
equal, Formula (3) gives a looser upper bound compared to
(tbR − tbL).

ξab =






tbR − ta if ta < tbL

MAX {tbR − ta, ta − tbL} if ta ∈ [tbL, tbR]
ta − tbL if ta > tbR

(3)

The time offset upper bound between two neighboring nodes
shown in Formula (3) is calculated only in the first time
synchronization, which happens shortly after the deployment
of the sensor network. Thus, the time offset caused by the
clock drift is small in Formula (3). The clock drift time
increases as time goes by. If the time synchronization interval
is long, the clock drift time will be long and should be taken
into consideration when determining the time offset upper
bound.

Formula (4) gives the time offset upper bound between
nodesA andB considering clock drift time.

∆ab = ξab + |ρa − ρb| · T (4)

In Formula (4),T is the time synchronization interval and
∆ab is the upper bound of the time offset between nodesA
andB when they are synchronized using one reference node.
To increase the accuracy of the estimation, we usen reference

nodes to obtain a set ofξab. The thresholdξ is defined as the
maximum among them, as showed in Formula (5).

ξ = MAX
{

ξab
i

}
+ |ρa − ρb| · T, where1 ≤ i ≤ n. (5)

With threshold ξ, we can detect malicious time offsets
among a set of time offsets. The threshold-based approach
is formally defined in Definition 6.

Definition 6 (Threshold-based delay attack detection):
Given the time offset data setΓ = {δ1, δ2, . . . , δn}, all the
time offsets bigger thanξ are claimed to be under delay
attack and are identified as malicious time offsets.

C. Delay Attack Accommodation

After the malicious time offsets have been detected using
the threshold, we can use the same strategy as that in Section
V-C to exclude them and obtain a good estimation on the true
time offset between two nodes.

VII. PERFORMANCEEVALUATIONS

A. Simulation setup

We evaluate the performance of the two approaches using
the RBS scheme by simulation. In the simulation, each node
has a maximum clock drift rate at microsecond level (10−6

second) [23]. The deviations of clock drift rates among nodes
are also at microsecond level. To synchronize two nodes, a
number of reference nodes are generated varying from 10 to
20. Each reference node broadcasts a reference beacon to the
two nodes, which record the beacon receiving times according
to their clocks. The arrival times of the reference beacons
follow Poisson distribution, and the beacon processing time
follows normal distribution. Since the typical message size is
36 bytes in TinyOS [24], the beacon processing time is about
12 milliseconds which is the time required to process a 36-byte
packet.

After the beacon has been processed, one node sends the
beacon receiving time to the other, which calculates the time
offset between them. After these two nodes get a set of time
offsets, we randomly pick some of them as malicious time
offsets and assume they are under delay attacks. We add a
delay attack time which follows normal distribution. Based
on a set of time offsets, the proposed schemes are evaluated
with different levels of delay attack time and different number
of malicious time offsets. All results are obtained by setting
the synchronization interval to 5,000 seconds. The resultsare
averaged over 100 runs. Most of the simulation parameters are
listed in Table I.

Three metrics are used to evaluate the effectiveness of the
proposed schemes: the successful detection rate, the false
positive rate, and the accuracy improving rate. In a network
with delay attacks, the successful detection rate tells the
percentage of malicious time offsets that can be successful
detected. The false positive rate shows the percentage of time
offsets that are reported as outliers but are actually not. The
accuracy improving rate shows the accuracy improvement on
the estimated time offset after the detected outliers have been



Number of reference nodes 10 to 20
Number of malicious nodes 1 to 5
Beacon processing time mean12 milliseconds
Beacon arrival interval mean 200 milliseconds
Clock drift rate mean 0.005 millisecond
Clock drift rate deviation 0.001 millisecond
Delay attack time 10 - 100 milliseconds
Synchronization interval 5,000 seconds

TABLE I

SIMULATION PARAMETERS

excluded. Let̂δ be the estimated time offset when the outliers
have been excluded andδbad be the estimated time offset when
the outliers have not been excluded. The accuracy improving
rate is defined in Formula (6).

Accuracy improving rate=
δbad − δ̂

δ̂
∗ 100% (6)

B. Simulation Results of the GESD-based Approach

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5

S
uc

ce
ss

 R
at

e 
(in

 %
)

No. of malicious nodes (delay= 10 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5

S
uc

ce
ss

 R
at

e 
(in

 %
)

No. of malicious nodes (delay= 100 ms)

NUM_REF=20
NUM_REF=15
NUM_REF=10

(a) (b)
Fig. 5. The successful detection rate of GESD

1) The Successful Detection Rate:Figure 5 shows the suc-
cessful detection rates as the number of malicious nodes and
the number of time offsets (NUMREF) change, considering
different delay attack times (delay). We did not show the
successful detection rate when there are five malicious nodes
and NUM REF is 10, because GESD does not work when the
number of malicious time offsets is equal or larger than that
of the benign nodes.

Based on Figure 5, we can make the following observations.
First, when the delay attack is 10ms, the successful detection
rate is low in most cases. Since the time synchronization
interval is 5,000 seconds, the clock drift time between two
nodes can be as large as 10ms. It is difficult to detect the
delay attacks when the delay attack time is not significantly
larger than the clock drift time, resulting in low successful
detection rate.

Second, Figure 5(a) also shows that the successful detection
rate increases as the number of time offsets increase in general.
Given a number of malicious time offsets, we will have more
benign time offsets with a larger set of time offsets; and
the more benign nodes we have, the higher the successful
detection rate is. Thus, when there are multiple outliers, GESD
is more effective if more time offsets are available.

Third, as long as the delay attack time is much larger
than the clock drift during the synchronization interval, the

successful detection rate increases dramatically. For example,
as shown in Figure 5 (b), the successful detection rate reaches
100% when the delay attack is at 100ms level. As the delay
attack time is larger than the clock drift time, the malicious
time offsets can be easily identified. Although not shown in
the figure, GESD keeps the 100% successful detection rate
when the the delay attack time is larger than 100ms.

2) The False Positive Rate:The simulation results show
that the false positive rate of GESD is almost zero in our
system settings. This is because a benign time offset will not be
identified as outlier when there exists malicious nodes. Thus,
GESD works well in terms of false positive rate.
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Fig. 6. The accuracy improving rate of GESD

3) The Accuracy Improving Rate:Figure 6 shows the
accuracy improving rates with different level of delay attacks.
From the figure, we can see that the accuracy improving rate
is low when the delay attacks are at the level of 10ms. This
is because the delay attack time is relatively small compared
to the clock drift time during the 5,000-second interval. Thus,
excluding the malicious time offsets cannot have too much
improvement. However, as the delay attack time increases,
excluding the malicious time offsets can significantly improve
the accuracy improvement rate. For example, when the delay
attack time is 100ms, the accuracy improving rate can be
increased by as much as 16 times (see Figure 6(b)).

C. Simulation Results of the Threshold-based Approach
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Fig. 7. The successful detection rate of the threshold-based approach

1) The Successful Detection Rate:Figure 7 shows the
successful detection rates with different level of delay attacks
when the synchronization interval is 5,000-second. As shown
in Figure 7(a), when the delay attack time is 10ms, the
threshold-based scheme can achieve higher successful detec-
tion rate (nearly 100% in all the cases) compared to GESD
(Figure 5(a)). This shows that the threshold-based approach is
effective even when the delay attack time is small compared



to the clock drift rate. In the threshold-based approach, the
threshold reflects both the maximum time offset that two nodes
can have when there is no delay attack and the time offset
caused by clock drift during the synchronization interval.
Thus, even though delay attack time is not large compared
to the clock drift time, it can still be detected at a high rate.
Similar to GESD, the threshold-based approach achieves a
100% successful detection rate when the delay attack time
is 100ms.

Figure 7 also shows that the successful detection rate does
not change too much as the number of malicious time offsets
increases. Different from GESD, the threshold is not affected
by the number of malicious time offsets.

In summary, the threshold-based approach can achieve a
better successful detection rate than GESD. The threshold-
based scheme performs well even when the delay attack time
is small compared to the clock drift time and it is robust against
multiple delay attacks.

2) The False Positive Rate:Simulation results show that the
false positive rate of the threshold-based approach is always
zero in different settings. This is because the threshold is
determined in such a way that no benign time offsets will
be identified as malicious. From the false positive rate point
of view, both the GESD approach and the threshold-based
approach perform well.
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Fig. 8. The accuracy improving rate of the threshold-based approach

3) The Accuracy Improving Rate:Figure 8 shows the
accuracy improving rates with different level of delay attacks.
Compared to Figure 6, Figure 8 shows that the accuracy
improving rate achieved in the threshold-based approach is
higher than that of GESD. This can be explained by the fact
that the threshold-based approach can achieve a much higher
successful detection rate than GESD. As the delay attack time
increases, the improvement on the accuracy also increases as
shown in Figure 8(a) and (b). In terms of the accuracy improv-
ing rate, the threshold-based approach performs better than
GESD, which is consistent with the results of the successful
detection rate.

VIII. C ONCLUSIONS

In this paper, we identified various attacks that are effective
to several representative time synchronization schemes, and
focused on dealing with the delay attack. We proposed two
solutions to detect and accommodate the delay attacks. Our
first approach uses the generalized extreme studentized deviate
(GESD) algorithm to detect multiple outliers introduced bythe

compromised nodes and our second approach uses a threshold
derived using a time transformation technique to filter out the
outliers. Extensive simulation results show that both schemes
are effective in defending against delay attacks. However,the
GESD approach needs more reference nodes to effectively
detect the malicious nodes. The threshold based approach
relaxes this assumption and outperforms GESD in terms of
successful detection rate, false positive rate, and accuracy
improving rate.

In the future, we will evaluate the overhead of collecting
multiple time offsets in our schemes. We will also look into
schemes to reduce the overhead and make our scheme more
efficient and practical.
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