
Energy-Aware CPU Frequency Scaling for Mobile Video Streaming

Wenjie Hu and Guohong Cao
Department of Computer Science and Engineering

The Pennsylvania State University
E-mail: {wwh5068, gcao}@cse.psu.edu

Abstract—The energy consumed by video streaming includes
the energy consumed for data transmission and CPU process-
ing, which are both affected by the CPU frequency. High
CPU frequency can reduce the data transmission time but
it consumes more CPU energy. Low CPU frequency reduces
the CPU energy but increases the data transmission time
and then increases the energy consumption. In this paper,
we aim to reduce the total energy of mobile video streaming
by adaptively adjusting the CPU frequency. Based on real
measurement results, we model the effects of CPU frequency
on TCP throughput and system power. Based on these models,
we propose an Energy-aware CPU Frequency Scaling (EFS)
algorithm which selects the CPU frequency that can achieve
a balance between saving the data transmission energy and
CPU energy. Since the downloading schedule of existing video
streaming apps is not optimized in terms of energy, we also
propose a method to determine when and how much data
to download. Through trace-driven simulations and real mea-
surement, we demonstrate that the EFS algorithm can reduce
30% of energy for the Youtube app, and the combination of
our download method and EFS algorithm can save 50% of
energy than the default Youtube app.

I. I NTRODUCTION

Video streaming has become extremely popular on mobile
devices over the last few years. Mobile video streaming on
Youtube, Netflix, has taken 55% of the total mobile data
traffic in 2015, and will take 75% by 2020 [3]. Since video
has much larger data size, a large amount of energy will
be consumed to download video on smartphones. Thus, it is
critical to improve the energy efficiency of video streaming
on smartphones. The energy consumption of video streaming
includes the energy consumed for data transmission and the
energy consumed for CPU processing such as decoding. To
reduce the data transmission energy, a widely used method
is to download some amount of video content as fast as
possible and then turn the wireless interface off [15, 6, 10].
Since the CPU energy is related to its working frequency
[7, 13], it is possible to reduce the CPU energy by decreasing
its frequency.

A straightforward method to save the energy consumption
of video streaming is to reduce the data transmission energy
and the CPU energy separately. However, these two goals
are contradictory because the TCP throughput is related to
the CPU frequency [20]. High CPU frequency can help
increasing the TCP throughput and thus reducing the data
transmission time, but costs much more CPU energy. On the

other hand, low CPU frequency reduces the CPU energy, but
makes the CPU a bottleneck and affects the TCP throughput.
It increases the data transmission time and may increase the
data transmission energy. To reduce the total energy of video
streaming, the CPU frequency should be properly setup to
achieve a balance between data transmission energy and
CPU energy.

For modern smartphones, the CPU can work at a series of
frequencies. The CPU frequency and the voltage provided
to the CPU can be adjusted at run-time. This feature is
called Dynamic Voltage and Frequency Scaling (DVFS).
The system driver uses different policies to adjust the
CPU frequency, which are called theCPU governors. For
instance, the default CPU governor used by most smart-
phones is theinteractive governor, which adjusts the CPU
frequency according to the CPU usage. However, the default
CPU governor tends to set the CPU at high frequency to
provide better performance, which consumes a large amount
of energy. Other CPU governors, such as thepowersave
governor, can restrict the CPU frequency to a low value, but
they may increase the data transmission time and energy.

As of today there is no existing policy to reduce the total
energy of mobile video streaming by properly adjusting the
CPU frequency. In this paper, we aim to solve this problem.
Based on real measurement results, we find that the CPU
may become a bottleneck and affect the TCP throughput
when its frequency is low, and then we model the effects of
CPU frequency on TCP throughput and power consumption.
Based on these models, we propose an Energy-aware CPU
Frequency Scaling (EFS) algorithm which selects the CPU
frequency that can achieve a balance between data trans-
mission energy and CPU energy. Since the downloading
schedule of existing video streaming apps is not optimized
in terms of energy, we also propose a method to determine
when and how much data to download. The efficiency of
EFS algorithm and our downloading method is verified by
trace-driven simulations and real measurement. Evaluation
results show that the EFS algorithm can reduce 30% of
energy, and the combination of our download method and
EFS algorithm can save 50% of energy, when compared to
the Youtube app.

The contribution of this paper can be summarized as
follows.

• We are the first to study the relationship between TCP

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

CPU frequency (GHz)

C
P

U
 u

sa
ge

 (%
)

Idle system
iPerf (TCP)
Video streaming

(a) CPU usage

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

CPU frequency (GHz)

Th
ro

ug
hp

ut
 (M

bp
s)

iPerf (TCP)
Video streaming

(b) TCP Throughput

Figure 1. The impact of CPU frequency on TCP throughput. Whenthe CPU usage is higher than 70%, CPU becomes a bottleneck andaffects TCP
throughput.

throughput, system power and CPU frequency in video
streaming. Based on measurement results, we model
the effects of CPU frequency on TCP throughput and
system power.

• We propose an Energy-aware CPU Frequency Scal-
ing (EFS) algorithm to reduce the total energy for
video streaming. During data transmission, EFS selects
the most energy efficient CPU frequency considering
both CPU energy and data transmission energy. When
there is no data transmission, EFS selects a low CPU
frequency to reduce the energy consumption without
affecting the user experience.

• We consider the impact of the downloading schedule
on energy and combine it with our EFS algorithm to
further improve the energy efficiency of video stream-
ing.

The rest of this paper is organized as follows. Section
II introduces the background and the TCP throughput and
power models. Section III presents the EFS algorithm and
Section IV presents our energy efficient downloading sched-
ule for video streaming. The evaluation results are shown in
Section V. Section VI introduces the related work. Section
VII concludes the paper.

II. PRELIMINARIES

In this section, based on real measurement results, we
model the effects of CPU frequency on TCP throughput and
system power, and introduce our TCP throughput and power
models.

A. Measurement Setup

To model the impact of CPU frequency on TCP through-
put and system power, we collect real measurement data
related to TCP throughput and power consumption under
different CPU frequencies. Our testbed is a rooted Samsung
Galaxy S5, which is equipped with Qualcomm Snapdragon
801 CPU, which can work at 15 different frequencies from
300 MHz to 2.45 GHz. We use the 3C CPU Manager [1]
to set the CPU working at a specific frequency and use the
OS monitor to record the real time CPU usage.

The TCP throughput measurement is based on AT&T’s
LTE network. We use the Youtube app to watch a video
with constant bit rate (720p) for 1 minute at different CPU
frequencies. At each CPU frequency, we collect the network
trace using TCPDUMP, which records the timestamp and
data size of each packet. All packets with an interval less
than 1 second are considered as one downloading period, and
we compute the TCP throughput as the average value among
all the downloading periods. Since the CPU can work at 15
frequencies, running a set of tests takes around 20 minutes.
To measure the power consumption, we use the Monsoon
power monitor to provide power directly to the smartphones,
which can record the power value at a sample rate of 5000
Hz.

B. Impact of CPU on TCP Throughput

CPU usage is the percentage of CPU time used to process
instructions, other than waiting. It is used to describe the
load of the CPU. When the CPU usage is above 70%, it
may become a bottleneck and affect the user experience.
For smartphones, the operating system itself consumes a
large amount of CPU. In Fig. 1(a), we show the CPU
usage of idle system (all user applications are turned off).
As can be seen, when the CPU frequency decreases, the
CPU usage increases, which may affect the performance of
user applications. Video streaming uses TCP as the transport
layer protocol, and TCP uses lots of CPU capacity to handle
congestion avoidance issues, buffer and reorder received
packets, request the retransmission of missing packets, etc.
On top of TCP, video streaming has complex application
layer operations, such as moving data from the TCP buffer
to the application buffer, decoding the received content and
displaying them on screen, and thus requires more CPU
capacity.

When the CPU frequency is low, the remaining CPU
capacity may not be enough to process the TCP task and
video streaming, and thus affecting the TCP throughput. To
verify this, we measure the CPU usage and TCP throughput
of two apps: iPerf (without application layer operation) and
Youtube. As shown in Fig. 1, the CPU usage increases when

0 0.5 1 1.5 2 2.5
0

5

10

15

20

CPU frequency (GHz)

Th
ro

ug
hp

ut
 (M

bp
s)

(a) TCP throughput

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

CPU frequency (GHz)

P
ow

er
 (m

W
)

(b) Pidle

0 0.5 1 1.5 2 2.5
0

1000

2000

3000

CPU frequency (GHz)

P
ow

er
 (m

W
)

(c) Ptran

Figure 2. The TCP throughput and power model considering CPUfrequency

its frequency decreases, and the TCP throughput decreases
accordingly for both iPerf and Youtube. Also, the TCP
throughput of Youtube is lower than that of iPerf and
is more sensitive to the change of CPU frequency, as it
has application layer operations. We also notice that the
TCP throughput of iPerf increases quickly when the CPU
frequency increases from 0.3GHz to 1.19GHz, but becomes
almost flat after that, where the CPU is not a bottleneck.
However, video streaming requires much more CPU capacity
and hence the impact of CPU frequency on throughput is
much higher.

C. TCP Throughput and Power Model

Here we mainly consider the TCP throughput of video
streaming. The average value of TCP throughput at different
CPU frequency is drawn in Fig. 2(a), and the TCP through-
put r(f) can be described asr(f) = rmax×r∗(f). The first
part rmax is the network throughput which is not related to
the variation of CPU frequency, and is only affected by the
signal strength, location, the number of users nearby, etc.In
this paper we model it using the average network throughput.
More accurate measurement of network throughput can be
found in [12, 22], which is out of the scope of this paper. The
second partr∗(f) describes the impact of CPU frequency
on TCP throughput, which may vary with different phone
models and the relationship can be modeled and trained
offline.For example, the TCP throughput of our testbed is
described asr(f) = 19.19× (−0.12× f2+0.71× f − 0.1).

In LTE, the wireless interface can work in four states:
idle, promotion, data transmission and tail. Initially the
LTE interface is in the idle state. When a data transmission
request comes, it enters the promotion state to obtain the data
transmission channels. Then it enter data transmission state
to transmit data. After data transmission, the LTE interface
is forced to stay in the tail state and wait for several seconds
before going to the idle state. During the tail state, the phone
still holds the data transmission channel, and can serve the
next data transmission request immediately.

Since LTE has four states, we build four power models
correspondingly. Our models describe the whole phone’s
power and use CPU frequency as an important parameter.
Here we show an example of the idle power and data

Table I
POWER MODEL CONSIDERINGCPUFREQUENCY

State Power (mW) Duration (sec)

Idle Pidle(f) = 315.7f + 854 -
Promotion Ppro(f) = 639.2f + 1206 tpro = 0.91
Data trans. Ptran(f) = 799.1f + 1241 -

Tail Ptail(f) = 288.3f + 1119 ttail = 10.35

transmission power using different CPU frequency in Fig.
2(b) and Fig. 2(c) (the other two states show similar trend).
As can be seen, the power in these states generally increases
linearly with the CPU frequency. Note that in some previous
work [13], the CPU power consumption increases super
linearly with the frequency, since they only consider the
power of CPU, where the voltage also changes linearly with
the CPU frequency. Different from them, we consider the
power consumption of the whole smartphones, where the
voltage provided by the battery is a constant number. As
a result, the power consumption changes linearly with the
CPU frequency, similar to [7]. For our testbed, the power
models of different states are summarized in Table I, where
f is in GHz and power is in mW.

III. E NERGY-AWARE CPU FREQUENCY SCALING FOR

EXISTING V IDEO STREAMING APPS

In this section, we introduce our Energy-aware CPU Fre-
quency (EFS) algorithm to select the most energy efficient
CPU frequency for existing video streaming apps.

A. Problem Statement

The video streaming process can be considered as a set
of n data transmission tasks. TaskTi needs to downloaddi
data from timeti. For an existing video streaming app, the
downloading schedule is determined by the application, i.e.,
di and ti can be considered as given value. To guarantee
that the video is played smoothly,Ti must be downloaded
before the next downloading period. In this paper we also
call ti+1 as the task end ofTi. For the last taskTn, the
task end is the time when the whole video is played out.
The duration from the start to the end of a task is called
the length of a task. The energy consumption of taskTi is
defined as the total energy consumed from the start to the

Power Promotion

time

Tail

Data transmission

Task end Power Promotion

time

Tail

Data transmission

Task end

(a) (b)

Power

time

Tail

Data transmission

Task end Power

time

Tail

Data transmission

Task end

(c) (d)

Idle Idle

Figure 3. The four cases to compute the energy of a task, whichis defined as the total energy from the start time to the task end. The dotted filling
indicates the CPU power in the corresponding state.

end, and our goal is to minimize the total energy of all the
tasks, which can be described asminimize

∑n

i=1
E(Ti).

B. The Energy Consumption of One Task

The energy consumption of a task contains the data trans-
mission energy and the CPU energy. Based on the starting
and finishing states of a task, the energy consumption of
Ti can be computed in four cases, as illustrated in Fig. 3.
In each case, we assume the CPU works at one frequency
during data transmission and a lower frequency when there
is no data transmission. During data transmission, we select
a frequency from the CPU frequency setF to achieve a
good tradeoff between reducing the data transmission energy
and the CPU energy. When the data transmission is done,
the CPU works at a lower frequencyfmin which reduces
the CPU energy and also provides satisfactory performance.
We do not consider the case where the data transmission
cannot be finished before the task ends, since it violates the
downloading schedule and then affects user experience [17].

Case (a):As shown in Fig. 3 (a), the LTE interface is in the
idle state at the beginning ofTi. Thus, it enters promotion
state first and pay extra promotion energy. In this case, the
CPU works at relative high frequency (fa) and the TCP
throughput is relative high (r(fa) > di

li−ttail−tpro
), so the

phone demotes to idle state at the end of the task. The total
energy can be computed using Eq. 1.

E(Ti)
a =tpro × Ppro(fa) +

di
r(fa)

× Ptran(fa)

+ ttail × Ptail(fmin)

+ (li − tpro − ttail −
di

r(fa)
)× Pidle(fmin),

if r(fa) >
di

li − ttail − tpro
(1)

Case (b): The energy consumption of Case (b) is shown
in Fig. 3 (b). Similar to Case (a), the wireless interface is
in the idle state at the beginning ofTi. However, the TCP
throughput in this case is low as low CPU frequency is
selected. At the end of taskTi, the LTE interface is still
in the tail state. The total energy is computed as Eq. 2. In

this case the next task can skip the promotion state and start
data transmission immediately.

E(Ti)
b =tpro × Ppro(fb) +

di
r(fb)

× Ptran(fb)

+ (li − tpro −
di

r(fb)
)× Ptail(fmin),

if
di

li − tpro
< r(fb) ≤

di
li − ttail − tpro

(2)

Case (c):As shown in Fig. 3 (c), the wireless interface is in
high power state at the beginning, so data transfer starts
immediately. Similar to Case (a), the TCP throughput is
assumed to be high in this case (r(fc) > di

li−ttail
). Then

the total energy is computed as Eq. 3.

E(Ti)
c =

di
r(fc)

× Ptran(fc) + ttail × Ptail(fmin)

+ (li − ttail −
di

r(fc)
)× Pidle(fmin),

if r(fc) >
di

li − ttail
(3)

Case (d):The energy consumption of Case (d) is shown in
Fig. 3 (d), where the data transmission starts immediately,
similar to Case (c). But the TCP throughput is assumed to
be low and the LTE interface is still in the tail state at the
task end. The total energy is computed as Eq. 4.

E(Ti)
d =

di
r(fd)

× Ptran(fd)

+ (li −
di

r(fd)
)× Ptail(fmin),

if
di
li

< r(fd) ≤
di

li − ttail
(4)

For taskTi, we compute the energy in all of the four
cases. In each case we search for the CPU frequency that can
minimize the energy. Then we define the minimum energy
in the four cases as the min energy of taskTi, as shown in
Eq. 5.

E(Ti) ∈ {minE(Ti)
a,minE(Ti)

b,minE(Ti)
c,minE(Ti)

d}

fa, fb, fc, fd ∈ F (5)

…
..

Start

End

Task 1

Task 2

Task 3

Task n

1a 1b

2a 2c 2d2b

3a 3c 3d3b

na nc ndnb

Figure 4. Mapping the minimum energy of video streaming to the shortest
path problem

C. Energy-Aware CPU Frequency Scaling Algorithm

For each task, it is easy to obtain the minimum energy
as there are only four cases. However, since the ending
of previous tasks also affects the energy of later tasks,
minimizing the energy of every task individually may not
minimize the total energy of all tasks. To solve this problem,
we propose an energy-aware CPU frequency scaling (EFS)
algorithm which aims to find the global optimal solution.
Our key idea is to map this problem to the shortest path
problem.

We build a directed graph as shown in Fig. 4. For each
task, there are four cases to compute the energy, as illustrated
in Fig. 3, except the first one, which only has two cases since
the wireless interface is in the idle state at the beginning.
Each energy case of a task is mapped to one node in the
graph. For example, the two cases of task 1 map to nodes1a
and1b. Besides these nodes, we add a virtual start and virtual
end node. Next we add links to the graph. Assuming taskTi

is downloaded using Case (a), then the LTE interface enters
idle state at the end, so taskTi+1 can only be scheduled by
Case (a) or Case (b). Thus, we add directed links from node
ia to nodes(i+ 1)a and (i + 1)b. The other links between
task nodes are added similarly. For the two virtual nodes, we
add links from the virtual start node to the two cases of task
1, and add links from the four cases of taskn to the virtual
end node. The weight of a link is the energy consumption
of the node at the end of the link. For the four links from
taskn to the virtual end node, their weight is defined as 0.
In this graph, we take into account all power cases of each
task and all possible schedule paths between tasks, so each
path from the virtual start node to the virtual end node will
map to one schedule of all tasks, and vice versa. As a result,
the minimum energy of all tasks corresponds to the shortest
path from the virtual start node to the virtual end node.

Based on the graph we can use the Dijkstra algorithm to
find out the shortest path. Givenn tasks, the number of nodes
in the graph isO(4n), and the number of edges isO(8n).
As the time complexity of the shortest path algorithm is

Table II
THE MINIMUM CPUFREQUENCY FOR VIDEO STREAMING WHEN THE

WIRELESS INTERFACE IS TURNED OFF

Video resolution Min CPU frequency

360p 422 MHz
480p 652 MHz
720p 652 MHz
1080p 883 MHz

O(V +E)logV , whereV is the number of nodes andE is
the number of edges, then the time complexity isO(n log n)
in our case. Additionally, as the CPU can work at|F |
discrete frequencies, computing the weight of each link need
to consider all the|F | possibilities. Putting them together,
the time complexity of the EFS algorithm isO(|F |n log n).

D. Minimum CPU Frequency Selection

In previous sections, we assume the minimum CPU
frequency without data transmission (fmin) is a constant
value. In fact, this value is related to the video resolution.
To obtain this minimum CPU frequency under a specific
video resolution, one simple solution is to play videos from
the local storage, and then measure the CPU frequency.
However, this minimum CPU frequency would be smaller
than what is needed. During video streaming, the system
also needs to maintain the buffer and TCP connection even
when there is no data transmission. There may be some
background apps that will consume extra CPU capacity, so
the system will require a higher CPU frequency.

To solve this problem, we use Youtube to stream a video
at the given resolution and pause it to buffer a long period
of video. Then, we tune the CPU frequency and search
for the minimum frequency that can still play the buffered
content smoothly. The results for different video resolutions
are shown in Table II. Note that during our measurement,
the background apps are still running as normal, and their
CPU capacity requirement has also been considered.

IV. ENERGY-AWARE DOWNLOADING SCHEDULE FOR

V IDEO STREAMING

The downloading schedule of video streaming determines
when and how much data to download. However, the
downloading schedule of existing apps is not optimized to
reduce energy. In this section, we design an energy efficient
downloading schedule and combine it with our energy-aware
CPU frequency scaling algorithm.

A. How Much to Download

Given a video sizeD, we can estimate its playback time
based on the bitrate of the video. The bitratev is related
to the video resolution. For example, the 480p video has a
bitrate of 1 Mbps and the 720p video has a bitrate of 2.5
Mbps [2]. The playback time for the video content is around
D/v. The energy consumed by downloadingD size of data
may have four cases, as shown in Fig. 3. The minimum

0 1 2 3 4 5
0

10

20

30

40

Data size (MB)

E
ne

rg
y

(J
)

Case a

Case b

Figure 5. The minimum energy to download video content with different
data size

energy of using Case (a) and Case (b) to download different
size of data is shown in Fig. 5. For both cases, the energy
consumption is a straight line increasing with the data size.
We call the data size whenE(T)a = E(T)b asβ, and it is
1.5 MB in our case. As the energy of Case (c) and Case (d)
is smaller than that of Case (a) and Case (b) by a constant
value (the promotion energy), they are not considered here.

From Fig. 5, we can see that when the downloading data
size is less than a thresholdβ, it should be downloaded
by Case (b), i.e., it should be downloaded with a smaller
throughput for a longer time. When the data size is larger
thanβ, then it can be downloaded directly or divided into
multiple pieces with each piece smaller thanβ. However,
the energy per byte in Case (a) (the slope of the line) is
much smaller than that of Case (b), and thus using Case (a)
to download the same size of data is more energy efficient.
Therefore, when the video content is larger thanβ, it should
be downloaded in one piece using Case (a). This conclusion
is also consistent with previous works [10, 6]. Considering
the buffer to hold the video content on smartphones is
limited, we set the optimal downloading data size to the
maximum buffer size.

B. When to Download

As described in previous section, when the downloading
data sizeD is larger thanβ, it is more energy efficient
to download using Case (a), and then the LTE interface
enters the idle state before the task ends. To save energy,
the LTE interface should stay in the idle state as long as
possible. On the other hand, the video content should be
downloaded before being used to provide better quality of
experience (QoE). Thus, the next downloading should start
a little earlier. The smallest decoding unit in video is called
Group of Pictures (GoP), which has a fixed length according
to the video coding protocol and frame organization [10].
Suppose this length isg, then the data size within the length
of a GoP is approximatelyv×g, wherev is the bitrate of the
video. As the CPU frequency used in the next downloading
period is not known beforehand, we should consider the
worst case, where the CPU frequency isfmin and the TCP
throughput isr(fmin). To guarantee one GoP of the next

Table III
V IDEO BENCHMARK

Video id Length (sec) Data size (MB) Resolution

1 57 8.8 720p
2 163 20.3 480p
3 271 53.3 720p
4 301 39.7 480p
5 496 79.9 720p
6 594 56.1 480p

task is downloaded before the end of the current task, the
interval between tasks is computed as Eq. 6.

Interval =
D

v
− tpro −

v × g

r(fmin)
(6)

V. EVALUATIONS

In this section we use trace-driven simulations to demon-
strate that our energy-aware CPU frequency scaling al-
gorithm can help existing video streaming apps to save
energy, and more energy can be saved using the optimized
downloading schedule.

A. Simulation Setup

The trace used for simulation is collected from the
Youtube app running on Samsung Galaxy S5. We watch
a group of videos with different length, data size and
resolution, as listed in Table III. We mainly consider videos
less than 10 minutes since videos longer than 10 minutes
are rare [4]. We collect two kinds of traces: the network
trace, which is used to extract the downloading time and
downloading data size, and the real-time CPU frequency
trace, which is read from the file “scaling_cur_freq”.
Based on these traces, we mainly compare the performance
of the following methods.

• Youtube: the original Youtube app using the default
interactive CPU governor to adjust the CPU frequency.

• Youtube+MaxMin: the Youtube app uses the highest
CPU frequency during data transmission and the min-
imum CPU frequency without data transmission.

• Youtube+EFS: the Youtube app using ourEnergy-
aware Frequency Scaling algorithm (EFS) to adjust
CPU frequency.

• Ourstreaming+EFS: the combination of optimized
downloading schedule and the EFS algorithm. The
buffer size is set to 10 MB.

B. Energy Comparison

We first compare the whole phone’s energy consump-
tion of different methods when watching videos in Table
III, and show the results in Fig. 6. As can be seen, the
energy consumption generally increases when the video
length increases. This is because we consider the energy
consumption during the whole playback period of the video.
The MaxMin method saves a large amount of energy and the
EFS method saves more. The combination of ourstreaming

1 2 3 4 5 6
0

300

600

900

1200

Video id

E
ne

rg
y

(J
)

Youtube
Youtube+MaxMin
Youtube+EFS
Ourstreaming+EFS

Figure 6. The total energy consumption of differ-
ent methods

With data transmission Without data transmission
0

100

200

300

400

500

E
ne

rg
y

(J
)

 Youtube

Youtube+MaxMin

Youtube+EFS

Ourstreaming+EFS

Figure 7. Impact of CPU frequency

360p 480p 720p 1080p
0

100

200

300

400

500

Video resolution

E
ne

rg
y

(J
)

Youtube
Youtube+MaxMin
Youtube+EFS
Ourstreaming+EFS

Figure 8. Impact of video resolutions

and EFS can save much more energy than simply using
the EFS algorithm. When the video is longer and the data
size is larger, more energy can be saved, because there
are more downloading tasks and thus more opportunities to
adjust the CPU frequency. On average, the MaxMin method
and the EFS method can save 22.1% and 30.2% more
energy than the default Youtube method, respectively. The
combination of ourstreaming and EFS can save 50.6% of
energy. On top of EFS, our optimized downloading schedule
helps to save another 29.2% energy. We also notice that
the energy consumption of MaxMin and EFS has similar
trends as that of the default Youtube method, since they
use the same downloading schedule. Ourstreaming adjusts
the downloading schedule by transmitting multiple tasks
together and thus shows a different trend. The energy of
ourstreaming method is mainly related to the data size and
the length of a video.

C. Impact of CPU Frequency on Energy

To better understand the energy saved by selecting dif-
ferent CPU frequency, we divide the total time into two
time periods: the period with data transmission (promotion
and data transmission time) and the period without data
transmission (tail and idle time), and then analyze the impact
of CPU frequency on energy in these two time periods. The
comparison of these two parts of energy of video 3 is shown
in Fig. 7. As can be seen, the EFS algorithm can help save
the data transmission energy, because it selects a proper
CPU frequency. Specifically, Youtube+EFS saves 13.1% of
energy and oustreaming+EFS saves 24.2% of energy during
data transmission. However, MaxMin consumes a little more
energy than the Youtube method since it always selects
the highest (most power consuming) CPU frequency. When
there is no data transmission, both MaxMin and EFS can
save energy when compared to the Youtube method, because
they all use lower CPU frequency. The EFS method reduces
more energy than MaxMin because it spends less time in
the period when there is no data transmission.

D. Impact of Video Resolution

Since mobile devices have different screen resolutions
and different network speed, video providers generally pro-

vide multiple versions for the same video with different
resolutions to satisfy users’ requirements. The video client
can select a fixed resolution or use DASH technology
to dynamically adjust the video resolution. To test the
performance of different methods under different video
resolutions, we collect traces of video 2 with a resolution
of 360p, 480p, 720p and 1080p, respectively. The energy
consumption of different methods is shown in Fig. 8. Clearly,
MaxMin and EFS can save energy under all resolutions, and
ourstreaming+EFS can save more. Considering the energy
saving ratio, we can see that it decreases when the video
resolution increases. When watching the 360p version of
video, MaxMin, EFS and ourstreaming+EFS can save 33%,
36.8% and 52.9% of energy when compared to the Youtube
method, respectively. However, these saving ratios drop to
9%, 19.7% and 38.1% when watching the 1080p video.
The reason is that a video with higher resolution has larger
data size and more pixels, and thus all methods need to
select a higher CPU frequency to download the video on
time, decode and play smoothly. As a result, the difference
between their CPU frequencies and the default system is
smaller and less energy can be saved.

VI. RELATED WORK

The wireless interface, especially the cellular interface
consumes a lot of power on smartphones [16]. In cellular
networks, the wireless interface stays in a high power state
(tail state) after a data transmission, and the tail state
wastes a large amount of energy. To save energy, researchers
propose to aggregate data tasks together to amortize the tail
energy [23, 9, 8]. Similar idea is also used by video stream-
ing which downloads a group of video content together and
then turn the wireless interface off [15]. However, video
streaming has strict delay constraint and the data should be
downloaded before being used [10, 11]. EVIS uses multiple
networks to provide energy-efficient and quality-guaranteed
video streaming [21], but it does not consider the impact of
CPU frequency to the network throughput.

Video streaming requires lots of CPU processing power to
provide good QoE. The CPU energy is related to its working
frequency [7, 19]. High CPU frequency can provide better
performance but consumes more energy. Many solutions

have been proposed to adjust the CPU frequency to achieve
a balance between performance and energy [18, 5, 24, 14].
They have some interesting results, such as how to select
the CPU frequency to finish the tasks before their deadline
and save energy [14], however, none of them considers the
impact of CPU frequency on TCP throughput.

The energy consumed by video streaming includes data
transmission energy and CPU energy. This makes the prob-
lem more complex, since the TCP throughput is closely re-
lated to CPU frequency [20]. High CPU frequency increases
the CPU energy consumption, while low CPU frequency
increases the data transmission time and may increase the
data transmission energy. Kwaket al. consider the tradeoff
between saving CPU energy and data transmission energy
in [13], and suggest to reduce the CPU frequency when the
network becomes bottleneck. Their intuition is to save the
CPU energy when waiting for the network tasks. However,
they do not consider that the TCP throughput is also reduced
when reducing the CPU frequency. Thus, their solution may
introduce too much delay for video streaming applications.
In this paper, we consider the delay and set the CPU to a
proper frequency that can save energy and ensure the video
content is downloaded before being used.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we modeled the effects of CPU frequency
on TCP throughput and system power, and studied how
to save energy for video streaming considering the CPU
frequency. During video streaming, high CPU frequency can
reduce the data transmission time but it consumes more CPU
energy; low CPU frequency reduces the CPU energy but
increases the data transmission time and then increase the
energy consumption. To address this problem, we proposed
an energy-aware CPU frequency scaling algorithm (EFS)
which can properly adjust the CPU frequency to reduce
the overall energy during video streaming. This algorithm
can be directly applied to existing video streaming apps,
like Youtube. Also, the downloading schedule of existing
apps is not optimized in terms of energy. We address
this problem by proposing an energy efficient downloading
schedule, which can save more energy when combined with
the EFS algorithm. Based on trace-driven simulations and
real measurement, we demonstrate that EFS can save 30%
of energy than the default Youtube app. By using properly
selected downloading data size and downloading interval in
our EFS algorithm, more than 50% of energy can be saved
when compared to the default Youtube app.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (NSF) under grants CNS-1526425 and CNS-
1421578.

REFERENCES

[1] 3c cpu manager. https://goo.gl/2OoLMF.
[2] Video bitrate. http://www.lighterra.com/papers/videoencodingh264/.
[3] Cisco visual networking index: Global mobile data traffic forecast

update, 2015-2020. http://goo.gl/DXWFyr, 2015.
[4] X. Cheng, C. Dale, and J. Liu. Statistics and Social Network of

YouTube Videos. In16th International Workshop on Quality of
Service (IWQoS), 2008.

[5] K. Choi, R. Soma, and M. Pedram. Fine-grained Dynamic Voltage
and Frequency Scaling for Precise Energy and Performance Tradeoff
based on the Ratio of Off-chip Access to On-chip ComputationTimes.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(1):18–28, 2005.

[6] M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Using Crowd-
sourced Viewing Statistics to Save Energy in Wireless VideoStream-
ing. In ACM MobiCom, 2013.

[7] C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed Dynamic
Voltage/Frequency Scheduling for Energy Reduction in Microproces-
sors. InProceedings of the 2001 International Symposium on Low
Power Electronics and Design (ISLPED), 2001.

[8] W. Hu and G. Cao. Energy Optimization Through Traffic Aggregation
in Wireless Networks. InIEEE INFOCOM, 2014.

[9] W. Hu and G. Cao. Quality-Aware Traffic Offloading in Wireless
Networks. InACM MobiHoc, 2014.

[10] W. Hu and G. Cao. Energy-Aware Video Streaming on Smartphones.
In IEEE INFOCOM, 2015.

[11] Krishnan, S. Shunmuga and Sitaraman, Ramesh K. Video stream
quality impacts viewer behavior: Inferring causality using quasi-
experimental designs. InACM IMC, 2012.

[12] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. LTE Radio Analytics
Made Easy and Accessible. InACM SIGCOMM, pages 211–222,
2014.

[13] J. Kwak, O. Choi, S. Chong, and P. Mohapatra. Dynamic Speed
Scaling for Energy Minimization in Delay-Tolerant Smartphone Ap-
plications. InIEEE INFOCOM, 2014.

[14] K. Kwon, S. Chae, and K.-G. Woo. An application-level energy-
efficient scheduling for dynamic voltage and frequency scaling.
In 2013 IEEE International Conference on Consumer Electronics
(ICCE), 2013.

[15] X. Li, M. Dong, Z. Ma, and F. C. Fernandes. GreenTube: Power
Optimization for Mobile Videostreaming via Dynamic Cache Man-
agement. InProceedings of the 20th ACM International Conference
on Multimedia, 2012.

[16] R. Mittal, A. Kansal, and R. Chandra. Empowering Developers to
Estimate App Energy Consumption. InACM MobiCom, 2012.

[17] H. Nam, K. H. Kim, and H. Schulzrinne. QoE Matters More Than
QoS: Why People Stop Watching Cat Videoss. InIEEE INFOCOM,
2016.

[18] P. Pillai and K. G. Shin. Real-time Dynamic Voltage Scaling
for Low-power Embedded Operating Systems. InProceedings of
the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP), pages 89–102, 2001.

[19] X. Ruan, X. Qin, Z. Zong, K. Bellam, and M. Nijim. An Energy-
Efficient Scheduling Algorithm Using Dynamic Voltage Scaling for
Parallel Applications on Clusters. InIEEE ICCCN, 2007.

[20] S. Sanadhya and R. Sivakumar. Rethinking TCP Flow Control for
Smartphones and Tablets.Wireless Networks, 20(7):2063–2080, Oct.
2014.

[21] J. Wu, B. Cheng, and M. Wang. Energy Minimization for Quality-
Constrained Video with Multipath TCP over Heterogeneous Wireless
Networks. InIEEE ICDCS, 2016.

[22] X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream: Physical Layer
Informed Adaptive Video Streaming over LTE. InACM MobiCom,
pages 413–425, 2015.

[23] B. Zhao, W. Hu, Q. Zheng, and G. Cao. Energy-Aware Web Browsing
on Smartphones. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 26(3):761–774, 2015.

[24] J. Zhuo and C. Chakrabarti. Energy-efficient Dynamic Task Schedul-
ing Algorithms for DVS Systems.ACM Transactions on Embedded
Computing Systems (TECS), 7(2):17:1–17:25, 2008.

