Energy-Aware CPU Frequency Scaling for Mobile Video Streanng

Wenjie Hu and Guohong Cao
Department of Computer Science and Engineering
The Pennsylvania State University
E-mail: {wwh5068, gcao}@cse.psu.edu

Abstract—The energy consumed by video streaming includes
the energy consumed for data transmission and CPU process-
ing, which are both affected by the CPU frequency. High
CPU frequency can reduce the data transmission time but
it consumes more CPU energy. Low CPU frequency reduces
the CPU energy but increases the data transmission time
and then increases the energy consumption. In this paper,
we aim to reduce the total energy of mobile video streaming
by adaptively adjusting the CPU frequency. Based on real
measurement results, we model the effects of CPU frequency
on TCP throughput and system power. Based on these models,
we propose an Energy-aware CPU Frequency Scaling (EFS)
algorithm which selects the CPU frequency that can achieve
a balance between saving the data transmission energy and
CPU energy. Since the downloading schedule of existing vide
streaming apps is not optimized in terms of energy, we also
propose a method to determine when and how much data
to download. Through trace-driven simulations and real mea
surement, we demonstrate that the EFS algorithm can reduce
30% of energy for the Youtube app, and the combination of
our download method and EFS algorithm can save 50% of
energy than the default Youtube app.

I. INTRODUCTION

other hand, low CPU frequency reduces the CPU energy, but
makes the CPU a bottleneck and affects the TCP throughput.
It increases the data transmission time and may increase the
data transmission energy. To reduce the total energy obvide
streaming, the CPU frequency should be properly setup to
achieve a balance between data transmission energy and
CPU energy.

For modern smartphones, the CPU can work at a series of
frequencies. The CPU frequency and the voltage provided
to the CPU can be adjusted at run-time. This feature is
called Dynamic \oltage and Frequency Scaling (DVFS).
The system driver uses different policies to adjust the
CPU frequency, which are called t&PU governors. For
instance, the default CPU governor used by most smart-
phones is thenteractive governor, which adjusts the CPU
frequency according to the CPU usage. However, the default
CPU governor tends to set the CPU at high frequency to
provide better performance, which consumes a large amount
of energy. Other CPU governors, such as flteversave
governor, can restrict the CPU frequency to a low value, but
they may increase the data transmission time and energy.

Video streaming has become extremely popular on mobile As of today there is no existing policy to reduce the total
devices over the last few years. Mobile video streaming orenergy of mobile video streaming by properly adjusting the
Youtube, Netflix, has taken 55% of the total mobile dataCPU frequency. In this paper, we aim to solve this problem.

traffic in 2015, and will take 75% by 2020 [3]. Since video Based on real measurement results, we find that the CPU
has much larger data size, a large amount of energy wilmay become a bottleneck and affect the TCP throughput
be consumed to download video on smartphones. Thus, it iwhen its frequency is low, and then we model the effects of
critical to improve the energy efficiency of video streaming CPU frequency on TCP throughput and power consumption.
on smartphones. The energy consumption of video streamingased on these models, we propose an Energy-aware CPU
includes the energy consumed for data transmission and tHeequency Scaling (EFS) algorithm which selects the CPU
energy consumed for CPU processing such as decoding. Teequency that can achieve a balance between data trans-
reduce the data transmission energy, a widely used methatission energy and CPU energy. Since the downloading
is to download some amount of video content as fast aschedule of existing video streaming apps is not optimized
possible and then turn the wireless interface off [15, 6, 10]in terms of energy, we also propose a method to determine
Since the CPU energy is related to its working frequencywhen and how much data to download. The efficiency of
[7, 13], itis possible to reduce the CPU energy by decreasingFS algorithm and our downloading method is verified by
its frequency. trace-driven simulations and real measurement. Evaluatio
A straightforward method to save the energy consumptiomesults show that the EFS algorithm can reduce 30% of
of video streaming is to reduce the data transmission energgnergy, and the combination of our download method and
and the CPU energy separately. However, these two goalsFS algorithm can save 50% of energy, when compared to
are contradictory because the TCP throughput is related tthe Youtube app.
the CPU frequency [20]. High CPU frequency can help The contribution of this paper can be summarized as
increasing the TCP throughput and thus reducing the dattpllows.
transmission time, but costs much more CPU energy. On the « We are the first to study the relationship between TCP

100 25
__ 80 = 20
o 60 < 15
] 5
5 g
3 40 5 10
o <]
(8] s |dle system =
20| mme iPerf (TCP) = 5 =t Perf (TCP)
== \/ide0 streaming === \/ideo streaming
0 0
(0] 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 25
CPU frequency (GHz) CPU frequency (GHz)
(a) CPU usage (b) TCP Throughput

Figure 1. The impact of CPU frequency on TCP throughput. WinenCPU usage is higher than 70%, CPU becomes a bottleneckffants TCP
throughput.

throughput, system power and CPU frequency in video The TCP throughput measurement is based on AT&T’s
streaming. Based on measurement results, we modélTE network. We use the Youtube app to watch a video
the effects of CPU frequency on TCP throughput andwith constant bit rate (720p) for 1 minute at different CPU
system power. frequencies. At each CPU frequency, we collect the network
« We propose an Energy-aware CPU Frequency Scaltrace using TCPDUMP, which records the timestamp and
ing (EFS) algorithm to reduce the total energy for data size of each packet. All packets with an interval less
video streaming. During data transmission, EFS selectthan 1 second are considered as one downloading period, and
the most energy efficient CPU frequency consideringwe compute the TCP throughput as the average value among
both CPU energy and data transmission energy. Wheall the downloading periods. Since the CPU can work at 15
there is no data transmission, EFS selects a low CPUrequencies, running a set of tests takes around 20 minutes.
frequency to reduce the energy consumption withouffo measure the power consumption, we use the Monsoon
affecting the user experience. power monitor to provide power directly to the smartphones,
o We consider the impact of the downloading schedulenhich can record the power value at a sample rate of 5000
on energy and combine it with our EFS algorithm to Hz.
further improve the energy efficiency of video stream-
ing. B. Impact of CPU on TCP Throughput

The rest of this paper is organized as follows. Section cpy usage is the percentage of CPU time used to process
Il introduces the background and the TCP throughput anghstryctions, other than waiting. It is used to describe the
power models. Section Il presents the EFS algorithm anqopaq of the CPU. When the CPU usage is above 70%, it
Section IV presents our energy efficient downloading schedmay become a bottleneck and affect the user experience.
ule for video streaming. The evaluation results are shown it smartphones, the operating system itself consumes a
Section V. Section VI introduces the related work. Sectiongrge amount of CPU. In Fig. 1(a), we show the CPU
VIl concludes the paper. usage of idle system (all user applications are turned off).
As can be seen, when the CPU frequency decreases, the
CPU usage increases, which may affect the performance of

In this section, based on real measurement results, weser applications. Video streaming uses TCP as the transpor
model the effects of CPU frequency on TCP throughput andayer protocol, and TCP uses lots of CPU capacity to handle
system power, and introduce our TCP throughput and powetongestion avoidance issues, buffer and reorder received

Il. PRELIMINARIES

models. packets, request the retransmission of missing packets, et
On top of TCP, video streaming has complex application
A. Measurement Setup layer operations, such as moving data from the TCP buffer

To model the impact of CPU frequency on TCP through-to the application buffer, decoding the received contentt an
put and system power, we collect real measurement datdisplaying them on screen, and thus requires more CPU
related to TCP throughput and power consumption undecapacity.
different CPU frequencies. Our testbed is a rooted Samsung When the CPU frequency is low, the remaining CPU
Galaxy S5, which is equipped with Qualcomm Snapdragortapacity may not be enough to process the TCP task and
801 CPU, which can work at 15 different frequencies fromvideo streaming, and thus affecting the TCP throughput. To
300 MHz to 2.45 GHz. We use the 3C CPU Manager [1]verify this, we measure the CPU usage and TCP throughput
to set the CPU working at a specific frequency and use thef two apps: iPerf (without application layer operationjlan
OS monitor to record the real time CPU usage. Youtube. As shown in Fig. 1, the CPU usage increases when

2000

20 y
. 3000
2 15 1500
s s X s
bt B £ 2000
2 10 5 1000 =
= -+ = X =
g * 5 g
£ & % 1000
E s 500
0 0 0
0 0.5 1 1.5 2 2.5 0 0.5 1 15 2 25 0 0.5 1 15 2 2.5
CPU frequency (GHz) CPU frequency (GHz) CPU frequency (GHz)
(a) TCP throughput (b) Piate (©) Prran

Figure 2. The TCP throughput and power model considering @Btijluency
Table |

its frequency decreases, and the TCP throughput decreases POWER MODEL CONSIDERINGCPUFREQUENCY
accordingly for both iPerf and Youtube. Also, the TCP S | Bower (mW) [Duration (sec)]
throughput of Youtube is lower than that of iPerf and Idle Piaie(J) = 315.7f + 854 -

is more sensitive to the change of CPU frequency, as it Promotion | Ppro(f) = 639.2f 4+ 1206 | tpro = 0.91
has application layer operations. We also notice that the | Datatrans.| Piran(f) =799.17 + 1241 -
TCP throughput of iPerf increases quickly when the CPU Tail Proit(f) = 28837 + 1119 | tiair =10.35
frequency increases from 0.3GHz to 1.19GHz, but becomes
almost flat after that, where the CPU is not a bottleneck,
However, video streaming requires much more CPU capacitg
and hence the impact of CPU frequency on throughput i
much higher.

ansmission power using different CPU frequency in Fig.
(b) and Fig. 2(c) (the other two states show similar trend).
As can be seen, the power in these states generally increases
linearly with the CPU frequency. Note that in some previous
C. TCP Throughput and Power Model work [13], the CPU power consumption increases super
linearly with the frequency, since they only consider the

H inl ider the TCP th hput of vid .)
ere we mainly consider the roughpttt of video ower of CPU, where the voltage also changes linearly with

streaming. The average value of TCP throughput at differe
CPU frequency is drawn in Fig. 2(a), and the TCP throughr&e CPU frequency. Different from them, we consider the
power consumption of the whole smartphones, where the

utr(f) can be described = Tynaz XT The first
gartﬁf) is the network thﬁggjhput which |Esfr)10t related to voltage provided by the battery is a constant number. As
e a result, the power consumption changes linearly with the

the variation of CPU frequency, and is only affected by theCPU frequency, similar to [7]. For our testbed, the power

signal strength, location, the number of users nearby/etc. dels of diff i stat din Table I wh
this paper we model it using the average network throughpu{no els of different states are summarized in Table I, where

More accurate measurement of network throughput can bé is in GHz and power is in mw.
foundin [12, 22], which is out of the scope of this paper. The m
second part*(f) describes the impact of CPU frequency

on TCP throughput, which may vary with different phone
models and the relationship can be modeled and trained In this section, we introduce our Energy-aware CPU Fre-
offline.For example, the TCP throughput of our testbed isjuency (EFS) algorithm to select the most energy efficient
described as(f) = 19.19 x (—=0.12 x f240.71x f—0.1). CPU frequency for existing video streaming apps.

In LTE, the wireless interface can work in four states:
idle, promotion, data transmission and tail. Initially the
LTE interface is in the idle state. When a data transmission The video streaming process can be considered as a set
request comes, it enters the promotion state to obtain tiae daof » data transmission tasks. Tagk needs to download;
transmission channels. Then it enter data transmissid@ stadata from timet;. For an existing video streaming app, the
to transmit data. After data transmission, the LTE intexfac downloading schedule is determined by the application, i.e
is forced to stay in the tail state and wait for several sesondd; and ¢; can be considered as given value. To guarantee
before going to the idle state. During the tail state, thengho that the video is played smoothl§; must be downloaded
still holds the data transmission channel, and can serve theefore the next downloading period. In this paper we also
next data transmission request immediately. call t;1, as the task end of;. For the last taskr,,, the

Since LTE has four states, we build four power modelstask end is the time when the whole video is played out.
correspondingly. Our models describe the whole phone'The duration from the start to the end of a task is called
power and use CPU frequency as an important parametehe length of a task. The energy consumption of tasks
Here we show an example of the idle power and datalefined as the total energy consumed from the start to the

. ENERGY-AWARE CPU FREQUENCY SCALING FOR
EXISTING VIDEO STREAMING APPS

A. Problem Satement

Power [Promotion TaskI end Power | promotion Task|end Power Task|end Power Task|end
Tail | Tail Tail l Tail
\dle Idle '
time time time T time
Data'transmission Data transmission Data transmission Data transmission
(a) (b) (c) (d)

Figure 3. The four cases to compute the energy of a task, whiclefined as the total energy from the start time to the task €he dotted filling
indicates the CPU power in the corresponding state.

end, and our goal is to minimize the total energy of all thethis case the next task can skip the promotion state and start

tasks, which can be described m#imize >~ | E(T;). data transmission immediately.
di
B. The Energy Consumption of One Task E(T;)" =tpro X Pyro(fs) +) X Prran(fo)
The energy consumption of a task contains the data trans- ; d; P
mission energy and the CPU energy. Based on the starting + (li = tpro = T“(fb)) % Prait (fmin),
and finishing states of a task, the energy consumption of) , d;
T; can be computed in four cases, as illustrated in Fig. 3. if T—— <r(fy) < [— 2)

In each case, we assume the CPU works at one frequency
during data transmission and a lower frequency when ther&ase (c):As shown in Fig. 3 (c), the wireless interface is in
is no data transmission. During data transmission, we sele®ligh power state at the beginning, so data transfer starts
a frequency from the CPU frequency sBtto achieve a immediately. Similar to Case (a), the TCP throughput is
good tradeoff between reducing the data transmission gnergssumed to be high in this case({.) > —=%—). Then

and the CPU energy. When the data transmission is donée total energy is computed as Eq. 3.

the CPU works at a lower frequendy,;,, which reduces B(T))" :i % Poran(f2) + trast X Prait(fonin)

the CPU energy and also provides satisfactory performance. r(fe)

We do not consider the case where the data transmission d;

cannot be finished before the task ends, since it violates the + (I = trait — m) X Prae(fmin),
downloading schedule and then affects user experience [17] d;

if r(fe) > [P—— 3)

gase (d): The energy consumption of Case (d) is shown in
; . ig. 3 (d), where the data transmission starts immediately,
CPU works at relative high frequenc;fao and the TCP similar to Case (c). But the TCP throughput is assumed to

thhrougr:jput '?[relat'\éf h'tgrlr(f‘;)t; l; —dt fth t) EOTT: ‘ tbe low and the LTE interface is still in the tail state at the
phone demotes to idie state at the end ot the tas eto ?:Lsk end. The total energy is computed as Eq. 4.

energy can be computed using Eq. 1.

Case (a):As shown in Fig. 3 (a), the LTE interface is in the
idle state at the beginning d&f;. Thus, it enters promotion
state first and pay extra promotion energy. In this case, th

d; g d;
ETia:tro Pro a RN Pran a EE :—Xpran
() P X P (f)+ T(fa) X t (f) () T(fd) t (fd)
+ ttait X Prait(fmin) + (I; — (dfl)) X Prait (fmin),
r(Jd
+ (lz - tpro - ttail (f)) X Puile (fmln) d dz
“ <r(fa) < 7—— (4)
; l l ttazl
it 7(fa) > L
T\e li = teait — tpro For taskT;, we compute the energy in all of the four

(1) cases. In each case we search for the CPU frequency that can
minimize the energy. Then we define the minimum energy
in the four cases as the min energy of t&skas shown in

Eq. 5.

Case (b): The energy consumption of Case (b) is shown
in Fig. 3 (b). Similar to Case (a), the wireless interface is
in the idle state at the beginning @f. However, the TCP
throughput in this case is low as low CPU frequency isE(T;) € {min E(T;)*, min E(T})?, min E(T})¢, min E(T;)%}
selected. At the end of task;, the LTE interface is still

in the tail state. The total energy is computed as Eq. 2. In far fos fe; fa € F (5)

Table I
THE MINIMUM CPUFREQUENCY FOR VIDEO STREAMING WHEN THE
WIRELESS INTERFACE IS TURNED OFF
Task 1

| Video resolution [Min CPU frequency |

Task 2 360[) 422 MHz
480p 652 MHz
720p 652 MHz
Task3 1080p 883 MHz
Takn (na) (o) (o) (nd) O(V + E)logV, whereV is the number of nodes anfd is
W the number of edges, then the time complexit@is: log n)
Cena) in our case. Additionally, as the CPU can work [&)|
— discrete frequencies, computing the weight of each linldnee

Figure 4. Mapping the minimum energy of video streaming ®shortest to cqn3|der all th.dF| pOSSIbIlItIeS. P‘.m'”g them terther’
path problem the time complexity of the EFS algorithm ¢3(|F'|n log n).

D. Minimum CPU Frequency Selection

o _ o In previous sections, we assume the minimum CPU

For each task, it is easy to obtain the minimum energyrequency without data transmissiorf,,(;,) is a constant
as there are only four cases. However, since the endingyye. |n fact, this value is related to the video resolution
of previous tasks also affects the energy of later tasksyg gptain this minimum CPU frequency under a specific
minimizing the energy of every task individually may not y;igeo resolution, one simple solution is to play videos from
minimize the total energy of all tasks. To solve this problem (he [|ocal storage, and then measure the CPU frequency.
we propose an energy-aware CPU frequency scaling (EF§)owever, this minimum CPU frequency would be smaller
algorithm_ whic.h aims to fipd the global optimal solution. {yan what is needed. During video streaming, the system
Our key idea is to map this problem to the shortest pathyiso needs to maintain the buffer and TCP connection even
problem. when there is no data transmission. There may be some

We build a directed graph as shown in Fig. 4. For eacthackground apps that will consume extra CPU capacity, so
task, there are four cases to compute the energy, as ibedtra the system will require a higher CPU frequency.
in Fig. 3, except the first one, which only has two cases since To solve this problem, we use Youtube to stream a video
the wireless interface is in the idle state at the beginningat the given resolution and pause it to buffer a long period
Each energy case of a task is mapped to one node in th§ video. Then, we tune the CPU frequency and search
graph. For example, the two cases of task 1 map to nbdes for the minimum frequency that can still play the buffered
and1b. Besides these nodes, we add a virtual start and virtualontent smoothly. The results for different video resolns
end node. Next we add links to the graph. Assuming sk are shown in Table IIl. Note that during our measurement,
is downloaded using Case (a), then the LTE interface entefhe background apps are still running as normal, and their

idle state at the end, so tak;, can only be scheduled by CPU capacity requirement has also been considered.
Case (a) or Case (b). Thus, we add directed links from node

ia to nodes(i + 1)a and (i + 1)b. The other links between V. ENERGY-AWARE DOWNLOADING SCHEDULE FOR

task nodes are added similarly. For the two virtual nodes, we VIDEO STREAMING

add links from the virtual start node to the two cases of task The downloading schedule of video streaming determines
1, and add links from the four cases of tasko the virtual \when and how much data to download. However, the

end node. The weight of a link is the energy consumptiordownloading schedule of existing apps is not optimized to

of the node at the end of the link. For the four links from reduce energy. In this section, we design an energy efficient

taskn to the virtual end node, their weight is defined as 0.downloading schedule and combine it with our energy-aware
In this graph, we take into account all power cases of eacitPuU frequency scaling algorithm.

task and all possible schedule paths between tasks, so each

path from the virtual start node to the virtual end node will A- How Much to Download

map to one schedule of all tasks, and vice versa. As a result, Given a video sizeD, we can estimate its playback time

the minimum energy of all tasks corresponds to the shortesiased on the bitrate of the video. The bitratés related

path from the virtual start node to the virtual end node. to the video resolution. For example, the 480p video has a
Based on the graph we can use the Dijkstra algorithm tditrate of 1 Mbps and the 720p video has a bitrate of 2.5

find out the shortest path. Givertasks, the number of nodes Mbps [2]. The playback time for the video content is around

in the graph isO(4n), and the number of edges @(8n). D/v. The energy consumed by downloadibgsize of data

As the time complexity of the shortest path algorithm ismay have four cases, as shown in Fig. 3. The minimum

C. Energy-Aware CPU Frequency Scaling Algorithm

Table Il
40

VIDEO BENCHMARK
Case b [Video id | Length (sec)| Data size (MB)| Resolution |
30
_ 1 57 8.8 720p
z 2 163 20.3 480p
g% 3 271 533 720p
w o 4 301 39.7 480p
o
10 o 5 496 79.9 720p
#,#* 6 594 56.1 430p
OO 1 2 3 4 5

Data size (MB) task is downloaded before the end of the current task, the

Figure 5. The minimum energy to download video content wiffent interval between tasks is computed as Eq. 6.

data size D y

v
Interval = — — tyro — U9 (6)
v

V. EVALUATIONS

In this section we use trace-driven simulations to demon-
trate that our energy-aware CPU frequency scaling al-
rithm can help existing video streaming apps to save
nergy, and more energy can be saved using the optimized

gownloading schedule.

energy of using Case (a) and Case (b) to download different
size of data is shown in Fig. 5. For both cases, the energy
consumption is a straight line increasing with the data.size
We call the data size wheR(T)® = E(T)" asf3, and it is
1.5 MB in our case. As the energy of Case (c) and Case (
is smaller than that of Case (a) and Case (b) by a consta
value (the promotion energy), they are not considered her
From Fig. 5, we can see that when the downloading dat
size is less than a thresholg it should be downloaded A, Smulation Setup
by Case (b), i.e., it should be downloaded with a smaller g trace used for simulation is collected from the
throughput for a longer time. When the data size is largek ,¢,pe app running on Samsung Galaxy S5. We watch
than 3, then it can be downloaded directly or divided into group of videos with different length, data size and
multiple pieces with each piece smaller thénHowever, resolution, as listed in Table Ill. We mainly consider video

the energy per byte in Case () (the slope of the lin€) i§ess than 10 minutes since videos longer than 10 minutes

much smaller than that of Case (b), and thus using Case (&}¢ rare [4]. We collect two kinds of traces: the network
to download the same size of data is more energy efficientace which is used to extract the downloading time and

Therefore, when_ the vidgo cont_ent is Iargertl;ﬁari_t should . downloading data size, and the real-time CPU frequency
be downloaded in one piece using Case (a). This conclusm@ace, which is read from the filestal i ng_cur _freq’.

is also consistent with previous works [10, 6]. ConsideringBased on these traces, we mainly compare the performance
the buffer to hold the video content on smartphones isof the following methods

limited, we set the optimal downloading data size to the

maximum buffer size. « Yout ube: the original Youtube app using the default

interactive CPU governor to adjust the CPU frequency.
« Yout ube+MaxM n: the Youtube app uses the highest
CPU frequency during data transmission and the min-
As described in previous section, when the downloading imum CPU frequency without data transmission.
data sizeD is larger thang, it is more energy efficient « Yout ube+EFS: the Youtube app using ouEnergy-
to download using Case (a), and then the LTE interface aware Frequency Scaling algorithm (EFS) to adjust
enters the idle state before the task ends. To save energy, CpuU frequency.
the LTE interface should stay in the idle state as long as , Qur st ream ng+EFS: the combination of optimized

possible. On the other hand, the video content should be downloading schedule and the EFS algorithm. The
downloaded before being used to provide better quality of pyffer size is set to 10 MB.

experience (QoE). Thus, the next downloading should start)

a little earlier. The smallest decoding unit in video is edll B- Energy Comparison

Group of Pictures (GoP), which has a fixed length according We first compare the whole phone’s energy consump-
to the video coding protocol and frame organization [10].tion of different methods when watching videos in Table
Suppose this length ig, then the data size within the length 11I, and show the results in Fig. 6. As can be seen, the
of a GoP is approximately x g, whereu is the bitrate of the energy consumption generally increases when the video
video. As the CPU frequency used in the next downloadindength increases. This is because we consider the energy
period is not known beforehand, we should consider the&eonsumption during the whole playback period of the video.
worst case, where the CPU frequencyfjs;,, and the TCP The MaxMin method saves a large amount of energy and the
throughput isr(f.in). To guarantee one GoP of the next EFS method saves more. The combination of ourstreaming

B. When to Download

1200

- 500
—— igﬂizs;MaxMin I Youtube 500 | N Youtube _
900} —— Youtube+EFS 200 || I Youtube+MaxMin] I Youtube+MaxMin
—&— Ourstreaming+EFS I Youtube+EFS 400 | [EE Youtube+EFS
200 I Ourstreaming+EFS I Ourstreaming+EFS

Energy (J)
(o2}
o
o
Energy (J)

3001

360p 480p 720p 1080p

o 0— P - "
Video id With data transmission Without data transmission Video resolution

Figure 6. The total energy consumption of differ-
ent methods

Figure 7. Impact of CPU frequency Figure 8. Impact of video resolutions

and EFS can save much more energy than simply usingide multiple versions for the same video with different
the EFS algorithm. When the video is longer and the dataesolutions to satisfy users’ requirements. The videontlie
size is larger, more energy can be saved, because thetan select a fixed resolution or use DASH technology
are more downloading tasks and thus more opportunities t dynamically adjust the video resolution. To test the
adjust the CPU frequency. On average, the MaxMin methogherformance of different methods under different video
and the EFS method can save 22.1% and 30.2% monesolutions, we collect traces of video 2 with a resolution
energy than the default Youtube method, respectively. Thef 360p, 480p, 720p and 1080p, respectively. The energy
combination of ourstreaming and EFS can save 50.6% ofonsumption of different methods is shown in Fig. 8. Clearly
energy. On top of EFS, our optimized downloading scheduldvlaxMin and EFS can save energy under all resolutions, and
helps to save another 29.2% energy. We also notice thaturstreaming+EFS can save more. Considering the energy
the energy consumption of MaxMin and EFS has similarsaving ratio, we can see that it decreases when the video
trends as that of the default Youtube method, since theyesolution increases. When watching the 360p version of
use the same downloading schedule. Ourstreaming adjustgdeo, MaxMin, EFS and ourstreaming+EFS can save 33%,
the downloading schedule by transmitting multiple tasks36.8% and 52.9% of energy when compared to the Youtube
together and thus shows a different trend. The energy ofnethod, respectively. However, these saving ratios drop to
ourstreaming method is mainly related to the data size an@%, 19.7% and 38.1% when watching the 1080p video.

the length of a video. The reason is that a video with higher resolution has larger
data size and more pixels, and thus all methods need to
C. Impact of CPU Frequency on Energy select a higher CPU frequency to download the video on

To better understand the energy saved by selecting diime, decode and play smoothly. As a result, the difference
ferent CPU frequency, we divide the total time into two between their CPU frequencies and the default system is
time periods: the period with data transmission (promotiorsmaller and less energy can be saved.
and data transmission time) and the period without data
transmission (tail and idle time), and then analyze the thpa
of CPU frequency on energy in these two time periods. The The wireless interface, especially the cellular interface
comparison of these two parts of energy of video 3 is showrtonsumes a lot of power on smartphones [16]. In cellular
in Fig. 7. As can be seen, the EFS algorithm can help saveetworks, the wireless interface stays in a high power state
the data transmission energy, because it selects a propgail state) after a data transmission, and the tail state
CPU frequency. Specifically, Youtube+EFS saves 13.1% ofvastes a large amount of energy. To save energy, researchers
energy and oustreaming+EFS saves 24.2% of energy duringropose to aggregate data tasks together to amortize the tai
data transmission. However, MaxMin consumes a little moresnergy [23, 9, 8]. Similar idea is also used by video stream-
energy than the Youtube method since it always selectsng which downloads a group of video content together and
the highest (most power consuming) CPU frequency. Whetthen turn the wireless interface off [15]. However, video
there is no data transmission, both MaxMin and EFS carstreaming has strict delay constraint and the data should be
save energy when compared to the Youtube method, becaudewnloaded before being used [10, 11]. EVIS uses multiple
they all use lower CPU frequency. The EFS method reducesetworks to provide energy-efficient and quality-guaredte
more energy than MaxMin because it spends less time inideo streaming [21], but it does not consider the impact of

VI. RELATED WORK

the period when there is no data transmission. CPU frequency to the network throughput.
, Video streaming requires lots of CPU processing power to
D. Impact of Video Resolution provide good QOE. The CPU energy is related to its working

Since mobile devices have different screen resolutionfrequency [7, 19]. High CPU frequency can provide better
and different network speed, video providers generally properformance but consumes more energy. Many solutions

have been proposed to adjust the CPU frequency to achieve
a balance between performance and energy [18, 5, 24, 14]i1]
They have some interesting results, such as how to selecg
the CPU frequency to finish the tasks before their deadline
and save energy [14], however, none of them considers the4]
impact of CPU frequency on TCP throughput.

The energy consumed by video streaming includes datgs;
transmission energy and CPU energy. This makes the prob-
lem more complex, since the TCP throughput is closely re-
lated to CPU frequency [20]. High CPU frequency increases
the CPU energy consumption, while low CPU frequency [6]
increases the data transmission time and may increase the
data transmission energy. Kwak al. consider the tradeoff 7]
between saving CPU energy and data transmission energy
in [13], and suggest to reduce the CPU frequency when the
network becomes bottleneck. Their intuition is to save the [g]
CPU energy when waiting for the network tasks. However,
they do not consider that the TCP throughputis also reduced”
when reducing the CPU frequency. Thus, their solution mayiqj
introduce too much delay for video streaming applications.

In this paper, we consider the delay and set the CPU to

proper frequency that can save energy and ensure the video

content is downloaded before being used. [12]
VII. CONCLUSION AND FUTURE WORK (23]

In this paper, we modeled the effects of CPU frequency14]
on TCP throughput and system power, and studied hovl/
to save energy for video streaming considering the CPU
frequency. During video streaming, high CPU frequency ca
reduce the data transmission time but it consumes more CP
energy; low CPU frequency reduces the CPU energy but
increases the data transmission time and then increase t %]
energy consumption. To address this problem, we propose
an energy-aware CPU frequency scaling algorithm (EFS)7]
which can properly adjust the CPU frequency to reduce
the overall energy during video streaming. This algorithm;g;
can be directly applied to existing video streaming apps,
like Youtube. Also, the downloading schedule of existing
apps is not optimized in terms of energy. We address;g
this problem by proposing an energy efficient downloading
schedule, which can save more energy when combined wit
the EFS algorithm. Based on trace-driven simulations an
real measurement, we demonstrate that EFS can save 30%
of energy than the default Youtube app. By using properly?!!
selected downloading data size and downloading interval in
our EFS algorithm, more than 50% of energy can be save{$2]
when compared to the default Youtube app.

5]

0]

(23]
ACKNOWLEDGMENT

This work was supported in part by the National Science[24]
Foundation (NSF) under grants CNS-1526425 and CNS-
1421578.

REFERENCES

3c cpu manager. https://goo.gl/200LMF.

Video bitrate. http://www.lighterra.com/papers/emencodingh264/.
Cisco visual networking index: Global mobile data traffiorecast
update, 2015-2020. http://goo.gl/DXWFyr, 2015.

X. Cheng, C. Dale, and J. Liu. Statistics and Social Nekwof
YouTube Videos. Inl16th International Workshop on Quality of
Service (IWQoS), 2008.

K. Choi, R. Soma, and M. Pedram. Fine-grained Dynamictags
and Frequency Scaling for Precise Energy and Performarexedff
based on the Ratio of Off-chip Access to On-chip Computafiones.
|EEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24(1):18-28, 2005.

M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Using Crowd
sourced Viewing Statistics to Save Energy in Wireless ViBaeam-
ing. In ACM MohiCom, 2013.

C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed riaynic
\oltage/Frequency Scheduling for Energy Reduction in blicoces-
sors. InProceedings of the 2001 International Symposium on Low
Power Electronics and Design (ISLPED), 2001.

W. Hu and G. Cao. Energy Optimization Through Traffic Aggation
in Wireless Networks. INEEE INFOCOM, 2014.

W. Hu and G. Cao. Quality-Aware Traffic Offloading in Wiesls
Networks. INACM MobiHoc, 2014.

W. Hu and G. Cao. Energy-Aware Video Streaming on Snianes.
In |[EEE INFOCOM, 2015.

Krishnan, S. Shunmuga and Sitaraman, Ramesh K. Videarst
quality impacts viewer behavior: Inferring causality ugilgquasi-
experimental designs. IACM IMC, 2012.

S. Kumar, E. Hamed, D. Katabi, and L. Erran Li. LTE Radinalytics
Made Easy and Accessible. WCM S\ GCOMM, pages 211-222,
2014.

J. Kwak, O. Choi, S. Chong, and P. Mohapatra. Dynamice8pe
Scaling for Energy Minimization in Delay-Tolerant Smartple Ap-
plications. InIEEE INFOCOM, 2014.

K. Kwon, S. Chae, and K.-G. Woo. An application-level eeyy-
efficient scheduling for dynamic voltage and frequency ingal
In 2013 IEEE International Conference on Consumer Electronics
(ICCE), 2013.

X. Li, M. Dong, Z. Ma, and F. C. Fernandes. GreenTube: &ow
Optimization for Mobile Videostreaming via Dynamic Cacheai
agement. InProceedings of the 20th ACM International Conference
on Multimedia, 2012.

R. Mittal, A. Kansal, and R. Chandra. Empowering Depeis to
Estimate App Energy Consumption. ACM MobiCom, 2012.

H. Nam, K. H. Kim, and H. Schulzrinne. QoE Matters Moredhh
QoS: Why People Stop Watching Cat Videoss.IHEE INFOCOM,
2016.

P. Pillai and K. G. Shin. Real-time Dynamic \oltage Sogl
for Low-power Embedded Operating Systems. Rroceedings of
the Eighteenth ACM Symposium on Operating Systems Principles
(S0SP), pages 89-102, 2001.

X. Ruan, X. Qin, Z. Zong, K. Bellam, and M. Nijim. An Energ
Efficient Scheduling Algorithm Using Dynamic Voltage Scdjifor
Parallel Applications on Clusters. I£EE ICCCN, 2007.

S. Sanadhya and R. Sivakumar. Rethinking TCP Flow @briar
Smartphones and Tabletgdreless Networks, 20(7):2063-2080, Oct.
2014.

J. Wu, B. Cheng, and M. Wang. Energy Minimization for Qua
Constrained Video with Multipath TCP over Heterogeneouselss
Networks. InIEEE ICDCS, 2016.

X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream: Phyditayer
Informed Adaptive Video Streaming over LTE. WCM MobiCom,
pages 413-425, 2015.

B. Zhao, W. Hu, Q. Zheng, and G. Cao. Energy-Aware WeBing
on Smartphones. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 26(3):761-774, 2015.

J. Zhuo and C. Chakrabarti. Energy-efficient Dynamiski&chedul-
ing Algorithms for DVS SystemsACM Transactions on Embedded
Computing Systems (TECS), 7(2):17:1-17:25, 2008.

