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Abstract—Community has received considerable attention be-
cause of its application to many practical problems in mobile
networks. However, when considering temporal information asso-
ciated with community (i.e., transient community), most existing
community detection methods fail due to their aggregation of
the contact information into a single weighted or unweighted
network. In this paper, we propose a contact-burst-based clus-
tering method to detect transient communities by exploiting the
pairwise contact processes. In this method, we formulate each
pairwise contact process as regular appearance of contact bursts,
during which most contacts between the pair of nodes happen.
Based on such formulation, we detect transient communities by
clustering the pairs of nodes with similar contact bursts together.
We also propose a new data forwarding strategy for delay
tolerant networks in which transient communities serve as the
data forwarding unit. Evaluation results show that our strategy
can achieve much higher data delivery ratio than traditional
community-based strategies with comparable network overhead.

I. INTRODUCTION

In Delay Tolerant Networks (DTN) [1], mobile devices are

only intermittently connected due to mobility and low node

density. As a result, it’s hard to maintain an end-to-end path,

which makes data forwarding in DTN extremely difficult. To

address this problem, researchers have proposed approaches

to exploit social network concepts such as centrality [2][3][4],

community [5][6][7][8] and friendship [9][10][11].

Community has received considerable attention because of

its applications to data forwarding in DTN, worm containment

[12], etc. However, it is also a challenge to detect communities

in a large network [13] [14], especially considering the tem-

poral information associated with community. For example,

a class community consisting of students attending a class

may only appear during daytime, and a dormitory community

consisting of students at a dormitory may only appear at

night. Since these communities normally appear during a

time period and disappear thereafter, they are referred to

as transient communities (TCs). Although many community

detection methods have been proposed in the literature, there

are hardly any methods for TC detection.

Existing community detection methods are generally based

on weighted networks or unweighted networks. For example,

This work was supported in part by Network Science CTA under grant
W911NF-09-2-0053.

1TC 2TC

(a) (b) 

C

Fig. 1. False mixture: (a) TC1 appears during daytime and TC2 appears
at night. (b) The two TCs are falsely mixed into one community using a
traditional method.

algorithms have been proposed in [15][16] to detect commu-

nities in weighted networks. Methods like label propagation

[17] have been proposed to detect communities in unweighted

networks. Moreover, Clique Percolation Method (CPM) or

called K-clique [18] has been proposed to detect communities

in both weighted and unweighted network. AFOCS [7] can de-

tect static communities and track community dynamics based

on unweighted network snapshots. However, by aggregating

contact information into a weighted or unweighted network,

important contact information such as the time when nodes

contact will be lost. Losing such temporal information may

result in two problems related to TC detection: false mixture

and false separation as shown in Figure 1 and Figure 2.

• False Mixture There are originally two TCs in the

network, as shown in Figure 1 (a). TC1 is a class

community happening during daytime, and TC2 is a

dormitory community happening during night time. The

two communities share several students, who take classes

together and also live together. Since there is a large

overlap between them, traditional community detection

methods may falsely mix these two communities as

one. For example, CPM (K-clique) and AFOCS fail to

distinguish the two communities when the overlap is

larger than some threshold.

• False Separation Figure 2 (a) shows one TC in the

network. Because the network is not strongly connected

(i.e., only one node connects the two parts), a traditional

method may separate them into two communities. How-

ever, they should not be separated since they may indeed

attend the same class at the same time.

With false mixture, two highly-overlapping TCs cannot be
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Fig. 2. False separation: (a) The network has one TC. (b) The TC is falsely
separated into two communities using a traditional method.

distinguished by ignoring the temporal contact information.

With false separation, one large TC may be falsely separated if

node connections are not dense enough. Therefore, traditional

community detection methods fail to detect TCs.

In this paper, we propose a Contact-burst-based Clustering

Method (CCM) to detect TCs by exploiting the pairwise

contact processes. It is based on the detailed pairwise con-

tact information between nodes, instead of networks with

unweighted on-off edges or weighted edges. In CCM, we

formulate each pairwise contact process as regular appearance

of contact bursts, during which most contacts between the pair

of nodes appear. Based on such formulation, we detect TCs

by clustering the pairs of nodes with similar contact bursts

together. In addition to TC detection, we also apply TCs to

data forwarding in DTNs. The contributions of this paper are

three-fold:

1) We propose a CCM method to detect TCs. Compared

with existing methods such as CPM and AFOCS which

do not consider communities’ temporal information,

our method has much less false mixtures and false

separations.

2) A TC may periodically appear, and hence we propose

techniques to identify this appearance pattern, which is

useful in many applications.

3) We propose a data forwarding strategy in DTNs based

on TCs, where data is forwarded to TCs with better

relaying capability to the destination considering the

time constraint of the data. Evaluation results show that

our approach outperforms other existing data forwarding

approaches in DTNs.

The rest of the paper is organized as follows. Section II

presents our CCM method for TC detection. In Section III,

we present the TC-based data forwarding strategy. Section IV

gives a brief overview of the related work, and Section V

concludes the paper.

II. TRANSIENT COMMUNITY DETECTION

In this section, we first give some preliminaries, and then

present our CCM method for TC detection. Finally, we

compare our TC detection method with other community

detection methods and propose techniques to identify the

periodic appearance patterns of TCs.

A. Preliminary

In this section, we describe the contact traces and introduce

some terms that will be used in this paper.
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Fig. 3. Three contact bursts. An arrow represents a contact between two
nodes.

1) Contact trace: We study the social contact patterns on

three sets of traces, Dartmouth campus trace [19], MIT reality

trace [20] and UCSD campus trace [21]. These traces record

contacts among users carrying mobile devices on campus. In

Dartmouth and UCSD traces, devices are WiFi-enabled. The

Dartmouth trace uses SNMP logs from Access Points (APs).

The original trace contains records over several thousands

of WiFi-enabled devices and lasts almost 4 years. In this

paper, we focus on the data collected from September 2004

to December 2004. A contact is recorded when two devices

detect the same AP simultaneously. The UCSD trace records

the WiFi association of human-carried PDA with APs, and a

contact is recorded when two devices detect the same AP. In

MIT Reality trace, the devices periodically detect their peers

via Bluetooth interfaces, and a contact is recorded when two

devices move into the communication range of each other. The

details of these three traces are shown in Table I.

TABLE I
TRACE SUMMARY

Trace Dartmouth MIT Reality UCSD

Network type WiFi Bluetooth WiFi
Number of devices 425 97 275
Number of contacts 394254 114046 201923
Durations(days) 80 246 78
Granularity(secs) 300 120 20

2) Contact Burst: Simply extracting communities from

weighted or unweighted network is not enough to detect

TCs. Therefore, instead of simplifying each pairwise contact

process to a weight, our method processes the pairwise contact

information directly.

From the trace summary, we can see that each trace has

hundreds of thousands of contacts and detecting TCs from

these contacts directly will be hard. The time complexity

will be extremely large, and the opportunistic nature of the

contacts hardly provides any clue on how they are related

with TCs. Thus, we propose a different solution. We model

the pairwise contact process using simple units which can

represent the contact information between nodes and can be

directly processed. We formulate each pairwise contact process

as a series of contact bursts during which most contacts

between the pair of nodes appear. A contact burst is defined

as follows:

Definition 1: A contact burst TB = [ts, te] between

two nodes is a time period when contacts frequently appear

between these two nodes. Two adjacent contacts belong to one

contact burst if and only if the inter-contact time between them

is shorter than λ, where λ is a pre-defined threshold.
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Fig. 4. A connected graph built on contact bursts. Six contact bursts have
similar contact durations, and they may be from one TC, circled by red line.
The other four have different contact durations, which are not in this TC.

Figure 3 shows three contact bursts of two nodes, where

each vertical arrow indicates a contact and TBi
denotes the

i − th contact burst. A single contact is not considered as a

contact burst because it is more like a random contact.

With the concept of contact burst, each pairwise contact

process between two nodes is modeled as a series of contact

bursts TBi
= [tsi , tei ], i = 1, 2, 3.... To verify if the contact

bursts can really represent node contacts, we have done some

experiments based on the three traces to evaluate how many

contacts can be represented by contact bursts. Table II shows

the percentage of contacts that are within contact bursts and

the length of the contact bursts as a percentage of the total

trace duration. The value of λ is set empirically based on

different traces. We have found that in all of our three traces,

with λ = 1 hour, most contacts happen within some contact

bursts which only account for a small portion of the total time.

We have also tested other values of λ, and the results show

that the performance is not very sensitive to the change of λ.

For simplicity, we set λ = 1 hour.

TABLE II
HOW CONTACT BURSTS CAN REPRESENT CONTACT PROCESSES (λ = 1)

Trace Contacts in bursts (%) Bursts’ length (%)

Dartmouth 66.52% 6.65%
MIT 77.88% 10.36%
UCSD 81.22% 4.93%

Contact bursts are used to find TCs. A contact burst [ts, te]
between a pair of nodes is a time interval in which the two

nodes frequently contact. In a TC with duration [ts, te], its

members usually have frequent contacts with each other within

this interval; i.e., their contact bursts are all with duration

similar to [ts, te]. Therefore, if we are able to find a group

of contact bursts with similar duration, and they can mutually

form a connected graph and form a TC. For example, in

Figure 4, there are 10 contact bursts, where a double arrow

represents a contact burst. Among them, six contact bursts

start around 1pm and end around 2pm. Then, they can form

a connected graph, and are most likely from the same TC

with duration around [1, 2] pm. On the other hand, other

four contact bursts in the example are with different contact

durations, and are thus not in this TC. Although this example

is simple, in a complex network where contact bursts may

not have the exact same starting and ending time, we need

techniques to measure their similarity.

3) The Similarity of Contact Bursts: In order to detect TC,

our first objective is to find out contact bursts with similar

time periods.

Definition 2: The similarity of two contact bursts TB1 =
[ts1, te1] and TB2 = [ts2, te2] is defined as the Jaccard

similarity coefficient

S(TB1, TB2) =
TB1 ∩ TB2

TB1 ∪ TB2

=











min(te1,te2)−max(ts1,ts2)
max(te1,te2)−min(ts1,ts2)

,

if min(te1, te2) > max(ts1, ts2)

0, if min(te1, te2) ≤ max(ts1, ts2)

Jaccard similarity coefficient is commonly used to measure

the similarity between two equal length “0-1” sequences; i.e.,

the total number of positions where both sequences have 1

divided by the total number of positions where at least one

sequence have 1. Similar technique can be applied to our case

when two time intervals are compared. The Jaccard similarity

coefficient for two time intervals are the intersection between

them divided by the union of them.

B. TC Detection with CCM

Based on contact bursts and their similarity, we cluster

similar bursts together, from which we find TCs. There are

many clustering methods in the literature, like K-means [22],

spectral clustering [23] and hierarchical clustering [24]. All

these methods are aimed to cluster a set of subjects, with

the similarity well defined. Using K-means algorithm, the

number of clusters should be pre-known before clustering.

Spectral clustering partitions nodes into clusters by using the

eigenvectors of a pairwise similarity matrix. Among them,

hierarchical clustering is effective and efficient with only

one parameter – minimum allowed similarity (γ) that can be

flexibly set. Thus, our CCM is based on hierarchical clustering.

With a set of n contact bursts, CCM runs as follows:

1) Initialization: Each of the n contact bursts starts to form

its own cluster.

2) Merge clusters: Pick two clusters with the largest

similarity and merge them together. The similarity of

two clusters is defined to be the average of all pairwise

Jaccard similarity coefficient of the contact bursts in

these two clusters. This step repeats until the termination

condition is satisfied, as defined in the next step.

3) Termination: The algorithm terminates if the largest

similarity between all clusters in one round is smaller

than the minimum allowed similarity γ.

In order for the algorithm to generate TCs, we need to

modify the cluster merging phase. With this algorithm, two

clusters with similar happening time may be merged as a TC.

However, this is not always true. For example, if two clusters
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Fig. 5. For two clusters to merge, they must share at least one common
node. (a) No common node, nodes U, V and nodes X, Y may come from
two different TCs which appear at similar time. (b) Two contact bursts with
common node U , and these three nodes form a TC.

don’t have any common node, it is more likely that they are

from two TCs which happen at similar time but at different

locations. Thus, we add one condition for cluster merging; that

is, the picked clusters must have at least one common node

(as shown in Figure 5). For all pairs that satisfy this condition,

those with the largest similarity are merged.

With CCM, contact bursts with similar time periods are

clustered together. One cluster corresponds to one TC, where

nodes attached to the contact bursts will be in this TC. When

the algorithm terminates, there may be some “tiny” clusters,

which only include one contact burst. One contact burst only

consists of two nodes, and it is more like a personal meeting

rather than a TC. For a contact burst [ts, te], its duration

is defined as te − ts. For a cluster which includes multiple

contact bursts, its duration is defined as the average of the

durations of these contact bursts. A short cluster duration may

represent an occasional encountering of several nodes, which

should not be counted as a community. Thus, we should delete

clusters that only have one contact burst, and delete clusters

with durations shorter than Tmin, which is a parameter and

we set Tmin = 0.25 hour.

Parameter γ: The minimum allowed similarity γ will have

impacts on the number of TCs and their average size. We have

run CCM on the UCSD trace to see the impacts of γ, and the

results are shown in Figure 6. As can be seen, decreasing γ
results in a smaller number of TCs and a larger size. When

γ is small, the minimum allowed similarity between clusters

becomes smaller, and then more clusters will be merged,

resulting in fewer TCs with larger size. If γ is too large,

the clustering process ends quickly, and contact bursts that

should belong to the same TC may not be clustered before

termination. Thus, it is important to find the right value for γ.

In a mobile network, contacts that happen between members

in the same community are called intra-community contacts,

and contacts that happen between members in different com-

munities are called inter-community contacts. A community

structure is preferred if there are more intra-community con-

tacts and less inter-community contacts. Since TC also has

temporal information, a contact is called an intra-community

contact in a TC only when the contact happens between

members in the same TC and the contact happens during this
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Fig. 6. The number of communities (left, blue) and the average size of the
communities (right, green) with varying γ (UCSD trace)
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Fig. 7. Proportion of intra-community contacts with varying γ

TC’s existing period.

To obtain the percentage of intra-community contacts, we

re-run the experiment with the TCs’ information and count

the number of intra-community contacts. The results are

normalized by dividing them by the total number of contacts.

The percentages of intra-community contacts in a network

using different TC threshold γ are shown in Figure 7, and a

larger percentage is preferred. As can be seen, the percentage

of intra-community contact is the largest when γ is 0.4, and

we choose γ = 0.4 in the rest of the paper.

C. Evaluations

We compare the performance of our TC detection algorithm

CCM with existing commonly used community detection

algorithms: CPM (K-clique) and AFOCS. The performance

is compared based on six metrics, covering various properties

of community. Here, we only show the results based on the

UCSD trace, since results on other traces are similar.

Number of communities and community size: Figure 8 (a)

shows that CCM can detect much more TCs than communities

detected by CPM and AFOCS. This indicates that CPM

and AFOCS may have mixed some TCs to one community.

Figure 8 (b) shows that communities detected by CPM are

usually bigger than those detected by AFOCS and CCM. This

further confirms that CPM may have mixed some TCs, making

the overall community size larger.
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(e) Proportion of intra-community con-
tacts
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Fig. 8. Comparisons among CMP, AFOCS and our algorithm CCM

Proportion of nodes involved in community: Community

structure is usually used to help data forwarding in DTN;

thus it is preferable if more nodes can be included in the

community. Figure 8 (c) shows that CCM usually involves

more nodes than CPM and AFOCS. In CPM and AFOCS, the

node that has infrequent contacts with others may be ignored.

Number of associated communities for one user: We use

this metric to show how much communities are overlapped.

From Figure 8 (d), we can see that a node is normally attached

to one community in CPM or AFOCS. This means commu-

nities are almost mutually disjoint, which does not achieve

the objective of detecting overlapping communities. However,

TCs detected in CCM have good overlapping property where

a node belongs to an average of three TCs. Because TCs are

detected using temporal information, it has no limitation on

how much communities overlap. Other methods have limits

on how much two communities can overlap.

Proportion of intra-community contacts: We prefer a

community structure which can incorporate more contacts.

For CPM and AFOCS, a contact is considered as an intra-

community contact when it appears between two members in

the same community. We need another temporal requirement

for a contact in TC to be considered as an intra-community

contact; that is, it must happen within the community’s dura-

tion. Therefore, we can see that TC incorporates less intra-

community contacts than CPM and AFOCS as shown in

Figure 8 (e). CPM has the highest number of intra-community

contacts. This can be explained by the fact that there are

many large communities detected by CPM, which makes more

contacts counted as intra-community contacts.

Location distortion: It measures how much is the difference

among nodes’ locations within a community. Intuitively, a

smaller location distortion means that users in the same

community are near each other. On the contrary, a larger

location distortion means that users may appear at multiple

places in this community. A community’s location distortion is

the standard deviation of the locations of all intra-community

contacts. A contact’s location is calculated by averaging two

node locations at the contact time.

Loc<i,j> =
Loci,t<i,j>

+ Locj,t<i,j>

2

A community’s mean location is calculated by averaging

the locations of all intra-community contacts.

Loc(C) =

∑

<i,j>∈C Loc<i,j>
∑

<i,j>∈C 1

The location distortion within a community C is defined

as the standard deviation of all intra-community contacts’

positions.

Distortion(C) = stdev{Loc<i,j>} (< i, j >∈ C)

=
√

var{Loc<i,j>} (< i, j >∈ C)

=

√

∑

<i,j>∈C(Loc<i,j> − Loc(C))2
∑

<i,j>∈C 1

The UCSD trace does not record users’ location informa-

tion, so we estimate user’s locations through the detected APs’

locations at that time. From Figure 8 (f), we can observe that

the location distortion in TCs detected by CCM is smaller

than that by CPM and AFOCS; i.e., nodes usually gather

at one place in a TC. In a traditional community-based data

forwarding approach, data is intended to be forwarded to the

communities that include the destination node. In such an

application, a smaller location distortion is preferred, because

this means nodes are near to each other in one community.

Once the data reaches the destination community, it must be

near the destination node. In communities detected by CPM

and AFOCS, nodes do not have a gathering period, so the

contacts between them can appear at any time and any place,

which results in a large location distortion.

D. Periodic Appearance of Transient Communities

With the proposed CCM, we can detect TCs on a daily basis.

We run the algorithm based on the traces and find that there are
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Fig. 10. The PDF of a TC’s start time on a daily basis and the PDF of the TC’s duration

many TCs sharing similar members and appearing at different

times. These TCs represent one social group which appears

periodically, like a class. In addition to these periodically

appearing TCs, the majority of TCs only appear once. Such

randomly appearing communities are usually formed due to

the opportunistic meeting of unfamiliar nodes. Later, we will

no longer consider these opportunistically formed TCs. In this

section, we will identify the periodic appearance of TCs based

on the traces and exploit their appearance patterns.

1) Identifying the periodic appearances of TCs: The algo-

rithm we use to cluster similar TCs is the same hierarchical

clustering as we presented in Section II-B. TCs are clustered

according to the similarity of their members, which is also

based on the Jaccard similarity coefficient.

We are interested in knowing how many times each TC

appears. We run the clustering algorithm on three traces, each

with 75 days of data. The CDFs of TCs’ appearance times are

shown in Figure 9. TCs that only appear once are not included

in the figure. As can be seen, there are more than 10% TCs in

the Dartmouth trace and about 5% TCs in the MIT and UCSD

traces which appear more than 10 times. Meanwhile, there are

also some TCs appear more than 30 or 50 times. Given the

frequent appearances of TCs, the next question is how to find

the appearance patterns of TCs.

2) Appearance patterns of TCs: In this subsection, we

study the periodic appearance patterns of TCs on three sets of

traces. We formulate the appearance patterns of TCs on daily

basis, based on the fact that many social groups are formed

daily such as families, offices, and classes. Although there are

many social groups formed on a weekly or monthly base or on

a more complex pattern, we will not consider these patterns

here and leave them as future work. The appearance pattern is

formulated in two aspects. One is the distribution of the TC

starting time, and the other is the distribution of TC duration.

We have two observations. First, the starting time of a TC

within a day can be well approximated by a normal distribu-

tion. We take one TC in the Dartmouth trace as an example,

shown in Figure 10 (a), and the parameters of the distribution

is shown in Table III. The TC usually appears at around

2 pm. Second, the duration of a TC can be approximated

by an exponential distribution, as shown in Figure 10 (b).

The parameter λ is 0.374, which means that the TC has an

average duration of 1/λ = 2.674 hours. In our traces, a TC

only appears with limited number of times, and hence the

samples used to train the distributions are limited. Therefore,

the approximation does not seem perfect, especially for the

normal distribution. We believe the approximation should be

better if more data are used.

TABLE III
THE PARAMETERS OF NORMAL AND EXPONENTIAL DISTRIBUTION

normal(µ,σ2) exponential(λ)
µ = 14.256 σ = 3.356 λ = 0.374

Determining the probability of TC appearance within a

time interval: Given a time interval [ts, te], we are interested

in determining the probability that a TC will appear. It is

affected by three factors: the probability that the TC appears

in that day, the distribution of its start time in that day, and the

distribution of its duration. The probability that a TC appears

in a day is simply calculated as the percentage of days when

the TC has appeared during the warm-up period. Based on

this, whether the TC appears within the pre-defined interval

includes two possibilities. The first possibility is that the TC

starts in the time period [ts, te], and the second is that the

TC starts before the time interval but lasts until the start of

the time interval. Suppose the start time is represented by a

normal distribution with parameters µ and σ, and the duration

is represented by the exponential distribution with parameter

λ. The probability of the first possibility is:

P1[ts, te] =

∫ te

ts

1

σ
√
2π

e−
(t−µ)2

2σ2 dt

= normcdf(te, µ, σ
2)− normcdf(ts, µ, σ

2)

where normcdf(t, µ, σ2) is the CDF of the normal distribution

with mean µ and standard deviation σ. The probability of the

second possibility is:

P2[ts, te] =

∫ ts

0

1

σ
√
2π

e−
(t−µ)2

2σ2 ∗ e−λ(ts−t)dt

= e−λ(ts−µ)+λ2σ2

2

∫ ts

0

1

σ
√
2π

e−
(t−µ−λσ2)2

2σ2 dt



The part under the integral is actually the probability density

function of the distribution norm(µ+ λσ2, σ2). Thus, the in-

tegral can be easily computed by normcdf(T1, µ+λσ2, σ2)−
normcdf(0, µ+ λσ2, σ2).

Then, the probability of the TC appearance within this time

interval is:

PTC [ts, te] = pd ∗ (P1[ts, te] + P2[ts, te]) (1)

where pd is the probability that the TC appears in the day.

III. APPLICATION TO DATA FORWARDING IN DTN

Community has been widely used for data forwarding in

DTN. However, ignoring the community appearance time

may lead to non-optimal forwarding paths. For example, in

community-based data forwarding, data is always intended to

be forwarded to a node within the destination’s community.

This is not optimal when considering two problems. First,

because traditional community usually has a large location

distortion, delivering data to destination’s community does

not mean it is getting closer to the destination node. Second,

considering the appearance time of communities, some of

the destination communities to which data are forwarded

may not even appear before data expire. Our TC-based data

forwarding strategy solves these problems by utilizing TCs as

the forwarding unit and always forwarding data to TCs that

have a better capability of relaying data to the destination node

within a short time constraint.

A. Relaying Capability

By estimating the current TC’s capability of forwarding data

to the destination node within a future time period [t, t+ T ],
we can choose users in TCs with better forwarding capability

as the data carriers. We denote the destination node as Nd and

the current TC as TCc. The destination TCs that Nd belongs

to are denoted as TC1
d , ..., TC

n
d . Specifically, we first compute

the relaying capability of TCc to each of TC1
d , ..., TC

n
d

within [t, t+T ] respectively. Then we can obtain the relaying

capability from TCc to Nd by summing the computed relaying

capabilities together.

We next discuss in detail how to compute the relaying

capability from TCc to one of the destination TCs (TCi
d).

The relaying capability from TCc to TCi
d within the time

period [t, t+ T ] is computed by summing the probability that

each node of TCc will appear in TCi
d in [t, t + T ]. It is

determined by the number of common nodes k between them

and the probability that TCi
d will appear in [t, t + T ]. When

we compute the relaying capability from TCc to TCi
d within

time period [t, t+ T ], it is implied that TCc has appeared at

time t. The probability that TCi
d will appear before t + T ,

denoted as PTCi
d
[t, t + T ], is computed in Equation (1). The

relaying capability from TCc to TCi
d is computed as:

RTCc→TCi
d
[t, t+ T ] = k ∗ PTCi

d
[t, t+ T ] (2)

The relaying capability from the current TC TCc to the

destination node Nd is decided by accumulating the relaying

capability from TCc to all the destination TCs Nd belongs to,

which are TC1
d , ..., TC

n
d . The relaying capability from TCs

to Nd is computed as:

RTCc→Nd
[t, t+ T ] =

n
∑

i=1

RTCc→TCi
d
[t, t+ T ] (3)

B. TC-based Data Forwarding Strategy

In this paper, we focus on unicast in DTN, where the

source node Ns and the data initialization time Tin, the

destination node Nd and data’s expiration time Tex are given.

The objective is to forward the data item from Ns to Nd within

the time period [Tin, Tex]. Our TC-based data forwarding

strategy is based on the relaying capability of TCs in the

recent time period [t, t + T ]. That is, our strategy always

forwards data to a TC that has better relaying capability.

Forwarding decisions are made upon node contacts. If a node

meets another node which is in a TC that has larger relaying

capability to destination, data will be forwarded. Since whether

to forward data depends on the current TC it belongs to, it’s

important for the node to know which TC it’s currently in.

1) Finding the Current TC: To keep track of the TCs that

a node is in, each node keeps a queue (Qw) of the recently

met nodes and the contact time within the last time window

(Tw). Tw is a constant and how to set the value of Tw will be

discussed in Section III-D2. Based on Qw and all TCs that it

has ever known, a matching score is assigned to each TC. The

node will consider the TC with the largest matching score as

the TC it is currently in. The matching score is computed as

follows:

Score(TC) =

∑

i∈Qw∧i∈TC(Tw − (t− ti))

|TC| (4)

where t is the current time, and ti is the node’s contact time

with the i-th node in queue.

2) Data Forwarding based on TCs: As TC is the data

forwarding unit, data is always forwarded to the TC with

better relaying capability to the destination. Therefore, once

data reaches a new TC with larger relaying capability, the

data is distributed to all nodes met in the TC. However, nodes

do not carry the data permanently, and they only carry the

data for a time period T . If it no longer contacts any node

with larger relaying capability or it reaches a TC with larger

relaying capability, the data will be deleted at the end of T .

The detailed data forwarding process is shown in the following

steps:

When node N1 contacts node N2 at time t,

1) Update Qw for N1, and find the TC that N1 is currently

in: TC1.

2) For each data that N1 carries.

a) Check if the data should be deleted from N1’s

buffer. The data should be deleted when the node

has neither contacted a node in TC with larger

relaying capability nor gone to a TC with larger

relaying capability in the period [t − T, t]. Once

the data item is deleted, check the next data item.
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Fig. 11. Data delivery ratio of various methods based on three traces
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Fig. 12. Data forwarding overhead measured by the number of data copies

b) Check if the data is carried by N2. If so, skip this

data item.

c) Check N2’s current TC, TC2. If TC2 and TC1 are

the same, N1 forwards data to N2 so that the data

can be distributed in the current TC. If TC2 has

better relaying capability to Nd, N1 also forwards

data to N2.

C. Performance Evaluations

We evaluate the performance of the TC-based data for-

warding strategy with the Dartmouth trace, the MIT Reality

trace, and the UCSD trace. The value of the time period T ,

with which we evaluate TCs’ relaying capability and decide

when to delete data, is empirically set at each trace. We set

T = 1 hour in all three traces with which we can achieve

high delivery ratio with small number of data copies as can

be seen in the following results. For each trace, we use the first

half as the training period to detect communities and TCs and

TCs’ appearing patterns, and use the second half of the trace

to evaluate the performance. For each data item, sources and

destinations are picked randomly and the generation time is

randomly chosen in the daytime, since nodes’ activity remains

low at night which may results in inaccurate comparison. Each

experiment is repeated 1000 times for statistical convergence.

Our TC-based data forwarding approach is compared with

three traditional community-based forwarding approaches and

the Epidemic approach which serves as the upper bound. A

brief overview of these approaches is shown below:

• Epidemic [25]: The data item is always forwarded to

another node if it does not have the data. This method

has the best data delivery ratio and the highest network

overhead, which is used as an upper bound for compari-

son.

• Label [6]: This strategy is the first proposed community-

based data forwarding strategy. In this strategy, the data

item is forwarded to nodes that are within at least one

common community with the destination node. CPM (K-

clique) is used to detect communities.

• Bubble Rap [5]: This strategy uses both centrality and

community. CPM (K-clique) is used to detect commu-

nities. The data item is always forwarded to a higher

centrality node, until it reaches a node that belongs to the

same community as the destination node. When the data

item reaches the destination community, it is forwarded

to higher-centrality node within the community’s scope,

until the destination node is reached.

• AFOCS: The strategy was proposed in [7], and it is

used to evaluate the communities detected by the AFOCS

method. This method is based on how many common

communities a node has with the destination node. The

data item is only forwarded when the contacted node

has more common communities with the destination node

than the original carrier.

The performance is measured with two metrics: one is the

data delivery ratio and the other is the network overhead.

Data delivery ratio is the proportion of data items successfully



delivered before the data expires. The network overhead is

the average number of data copies existing in the network

at each moment. The results are shown in Figure 11 and

Figure 12. Generally speaking, our TC-based method has

much better performance than the other three community-

based methods by achieving much larger delivery ratio with

comparable network overhead.

From Figure 11 we can see TC-based strategy consistently

achieves better performance than the other community-based

data forwarding algorithms and even get comparable delivery

ratio with Epidemic when the time constraint is small. The

good performance in small time constraints is due to the fact

that we have studied and predicted users’ behavior in TCs

within a short time period T and forward data to nodes in

TCs that have good relaying capability to destination within

T .

Figure 12 shows the overhead generated by each approach.

Epidemic always has the highest overhead among all the ap-

proaches. Our TC-based strategy generates comparable over-

head as other three community-based approaches. Since the

TC-based strategy removes data when there is no better TC

formed or contacted within T , the network overhead is kept

low.

D. Discussions

1) Effect of Prediction on Performance: In our TC-based

data forwarding strategy, predicting when and whether a TC

will happen in the future is important. With prediction, we can

compute the relaying capability of each TC to the destination

node and then use the nodes in TCs with good relaying

capability to carry data. To evaluate how the prediction affects

the performance, we compare our strategy with a TC-based

strategy without prediction (i.e., only distributing data when

a node finds that the contacted node or itself is within the

same TC of the destination node). Figure 13 compares their

data delivery ratios. We can clearly see the superiority of the

strategy with prediction.

2) Effect of Time Window Tw: In Section III-B1, we used

the information of recently met nodes in the last time window

Tw to identify the current TC. To find the optimal value of

Tw in each trace, we conduct an experiment to see how Tw

impacts the data delivery ratio. Here, the data delivery ratio is

recorded with a time constraint of 12 hours. The results are

shown in Table IV. As can be seen, Tw = 0.5 hour has the

best data delivery ratio for all traces.

TABLE IV
EFFECT OF Tw ON DATA DELIVERY RATIO

Tw 0.5 1 2
Dartmouth 0.248 0.217 0.205

MIT 0.115 0.114 0.112
UCSD 0.261 0.26 0.26

3) A Distributed Strategy: Our TC-based strategy can be

run in a distributed manner. Since the CCM algorithm must

be run in a centralized manner, we centrally detect all the

possible TCs in the training period and distribute the TCs’

information to each node. In the experiment, a node is able

to identify its current TC in a distributed manner with the

information of recently met nodes using the method introduced

in Section III-B1. The TC-based data forwarding decision can

also be made by individual node upon contacts, with the

forwarding process discussed in Section III-B2. Since TCs

may not be stable, we can detect the TCs again at the end

of a fixed period (like one month). Then, the updated TC

information can be redistributed.

IV. RELATED WORK

Complex networks usually consist of communities. Lots of

research has been done on detecting communities by inter-

disciplinary researchers from physics, biology and computer

science. They originally aimed at identifying communities in a

static network. There are many methods focused on detecting

disjoint communities such as the modularity-based methods

[26][15]. Techniques have also been proposed to detect over-

lapping communities such as CPM [18] and AFOCS [7], and

a survey of existing community detection methods is given

in [13]. Although community detection has been well studied

in static networks, it remains difficult to detect time-varying

communities in a dynamic network such as a social network

in which people’s behavior is highly dynamic. Recently, there

is more research on years have seen a trend for studying

evolving community structures based on the network structures

at successive network snapshots. Palla et al. [27] developed an

algorithm to identify evolving communities by first detecting

overlapping community structure at each network snapshots

and then mapping similar communities at different snapshots.

Nguyen et al. [7] proposed AFOCS, which can adaptively

update the community structure at each network snapshot

based on history without detecting communities again at each

snapshot. These methods are intended to analyze the long-

term evolution of community structures due to the permanent

change of humans’ behaviors or habits. There is still a dearth

of work examining transient communities caused by the peri-

odic change of human behavior.

Although Wei et al. proposed the concept of transient com-

munity in [3], they only investigated the community relation-

ship between individual pairs of nodes without providing the

complete knowledge about the transient community structure.

Pietilanen et al. [28] proposed algorithms to detect temporal

communities that are similar to transient communities. The

basic idea is to extract static community structure from each

network snapshot. However, the time interval of the network

snapshot is hard to determine; thus it is hard to accurately

detect transient communities. Our work is not based on

network snapshot but a careful study of the pairwise nodes’

contact processes, and thus can accurately detect transient

communities.

Community structure has been extensively utilized to ad-

dress the problem of data forwarding in DTN. It is believed

that nodes within the same community have higher chance to

contact each other. Pan et al. in [6] and [5] have proposed

to forward data to the nodes that are within the destination’s
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Fig. 13. The impact of prediction in the TC-based data forwarding approach.

community based on the static community structure. By in-

troducing dynamic community structure, AFOCS [7] further

considered community evolution in the community-based data

forwarding. Transient communities in [3] were only used to

determine the scope for evaluating node centrality. [28] studied

how temporal communities contribute to data dissemination

and concluded that temporal communities tend to limit data

dissemination in DTN. As far as we know, our paper is the first

work to fully utilize transient communities for data forwarding.

V. CONCLUSIONS

In this paper, we proposed a contact-burst-based clustering

method (CCM) to detect TCs by exploiting the pairwise con-

tact processes. We formulated each pairwise contact process

as regular appearances of contact bursts during which most

contacts between the pair of nodes appear. Based on such

formulation, we detect transient communities by clustering

the pairs of nodes with similar contact bursts. Trace-driven

simulations showed that CCM can detect TCs more effectively

compared with existing community detection methods. We

also applied the concept of TCs to data forwarding in DTN,

where data is forwarded to TCs that have better relaying

capability to the destination node. Trace-drive simulations

show that our approach outperforms traditional community-

based data forwarding approaches.
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