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Abstract—Detecting daily activities is helpful for health care
and clinical medicine. In this paper, we present ActDetector, a
smartwatch based application which detects 8 common daily
activities, including sitting, walking, running, going upstairs,
going downstairs, eating, driving and sitting in a vehicle. By
leveraging the built-in sensors on smartwatch, a multi-level
classification system is proposed which considers both detection
accuracy and energy efficiency. ActDetector is designed to work
unobtrusively, no matter on which wrist the smartwatch is worn.
We have implemented ActDetector on Sony Smartwatch 3 and
evaluated its performance in real experiments involving 12 users.
Experimental results show that ActDetector is energy efficient
and can detect the daily activities with high accuracy.

I. INTRODUCTION

Activities such as sitting, walking or eating, reflect routine
movements in our daily lives. Monitoring these daily activi-
ties provides helpful information for health care and clinical
medicine. For example, in [1], by analyzing the walking data
of patients with stroke, researchers evaluated the efficacy of
a task-oriented intervention in stroke rehabilitation, and in
[2], eating activity was monitored to help people with obesity
assess dietary intake and establish healthy eating habits. Even
for people in good health, maintaining activity dairies for
over an extended period of time plays an important role
in improving their fitness. For example, by detecting and
recording activities like sitting and walking, daily physical
activities can be checked to help decide if more physical
exercises are needed or not.

The rapid development of wearable technologies such as
smartphones and smartwatches, has opened up opportunities
for smart health [3]–[5], and it is possible to detect and
record a user’s health related daily activities unobtrusively
by using wearable devices. Since smartwatch is integrated
with motion sensors (e.g., accelerometer, gyroscope, etc.) and
worn by a user on his/her wrist most of the time, we can
collect motion related sensor data from the smartwatch to
detect daily activities through analysis of wrist movement
patterns. In this paper, we present a smartwatch based system
called ActDetector, which leverages two widely equipped
motion sensors, accelerometer and gyroscope, to detect 8 daily
activities, including sitting, walking, running, going upstairs,
going downstairs, eating, driving, and sitting in a vehicle. Act-
Detector is designed to record these activities in an unobtrusive
way without interrupting users’ normal smartwatch wearing
and usage patterns.

As a popular research area with potential applications in
health care, activity detection has been studied in previous
works [6]–[12]. Radio based systems have been proposed in
[6]–[10] to detect human activities by using radar or Channel
State Information (CSI). However, these systems rely on the
wireless devices installed indoor, which makes them unsuitable
for detecting activities outdoor. In [11], nodes with motion
sensors are placed at different parts of the body and data from
all these sensor nodes were collected for activity detection.
Although the system can work both indoor and outdoor, it is
not practical for daily monitoring since users have to wear
multiple sensor nodes on their wrists or ankles. Smartphone
based approaches are proposed in [12], [13], where inertial
sensors equipped on the smartphone are exploited for activity
detection. However, in these approaches, to achieve more
accurate detection, the smartphone has to be placed at a fixed
position with respect to the body, which is inconvenient for
users. Some simple activities such as walking or running can
be detected by commercial wrist-worn devices like Fitbit or
Jawbone. However, to use these devices, users have to set
the preferred wrist (i.e., the wrist on which the device is
worn) manually and these devices cannot detect complicated
activities such as eating or driving.

Different from the aforementioned works, ActDetector is
implemented on smartwatch to detect 8 common daily ac-
tivities. Several practical issues are considered in developing
ActDetector to meet the specific requirements of smartwatch,
such as sensing capabilities and resource constraints of smart-
watch, and different wearing habits of smartwatch users. The
accelerometer and gyroscope data is collected and a multi-level
classification system is designed for activity detection. First, a
few time-domain features are extracted from the accelerometer
data to detect the predominant activity sitting. Then, the re-
maining activities are classified into two categories, depending
on whether they are activities with repeated patterns or not.
Lastly, more time-domain and frequency-domain features are
extracted and different classifiers are trained to identify each
daily activity. ActDetector is designed to work unobtrusively
and robustly, and it functions no matter on which wrist the
smartwatch is worn. We have implemented ActDetector on
Sony Smartwatch 3 and evaluated its performance in real
experiments involving 12 users. Experimental results show that
ActDetector is energy efficient and can detect daily activities
with high accuracy.
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Fig. 1: The architecture of ActDetector.
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Fig. 2: The magnitude of the total acceleration
when starting an app on smartwatch.

The rest of this paper is organized as follows. Section II
discusses the design considerations. Section III presents the
system architecture and illustrates the design details of each
component. The implementation of ActDetector on Android
Wear based smartwatch is presented in Section IV. We eval-
uate the performance of our system in Section V. Section VI
reviews the related work and Section VII concludes the paper.

II. DESIGN CONSIDERATIONS

ActDetector is designed to unobtrusively detect and record
a user’s daily activities using off-the-shelf smartwatches. To
achieve this goal, the following design issues should be
considered.

First, the system should use sensors which are commonly
built in different types of smartwatches. A lot of smartwatch
manufacturers (e.g., Sony, LG, Apple, Samsung, Huawei) have
released their smartwatches recently. Depending on the brand
and the device version, these smartwatches are equipped with
different kinds of sensors. For example, the LG G Watch R is
equipped with barometer, which can be used to measure the
floors a user climbs, and the Samsung Gear S2 3G is equipped
with GPS, which can be used to track a user’s movement.
However, these two sensors are not supported by many other
smartwatches. To make ActDetector device independent, it
should only use sensors which are commonly equipped on
different types of smartwatches.

Second, the system must be lightweight. ActDetector is
implemented on smartwatch to continuously detect and record
the common activities occurred in user’s daily life. However,
compared to other mobile devices like smartphone, smartwatch
usually has much less computing resources and power. To
monitor user’s daily activities for hours or even days, a large
amount of sensor data needs to be collected and processed on
smartwatch. Therefore, ActDetector must be lightweight.

Third, to make ActDetector work unobtrusively and robust-
ly, users’ wearing habits should be considered when designing
the system. Although most users wear smartwatches on their
wrists, different users have different preferences. Some may
prefer wearing smartwatches on their left wrists, while others
may prefer the right wrists. When a user performs a daily
activity (e.g., walking, running or climbing stairs), the motion
related sensor data collected from the left wrist and right wrist

are different under most circumstances. Therefore, ActDetec-
tor should be able to detect the daily activities no matter on
which wrist the smartwatch is worn.

III. SYSTEM DESIGN

In this section, we present the design of ActDetector. As
shown in Figure 1, there are three main components in Act-
Detector. The sensor data is sampled from the accelerometer
and gyroscope for processing. By using the accelerometer data,
a light weight scheme is designed to detect on which wrist the
user wears the smartwatch. Based on the detected result, the
corresponding classifiers are chosen and a group of features
are extracted from sensor data to identify each daily activity.
The design details of each component are described as follows.

A. Sensor Data Collection

In ActDetector, accelerometer data and gyroscope data are
collected and analyzed to detect daily activities. Once Act-
Detector is started, the accelerometer data is sampled with a
sampling rate of 60 Hz. Since gyroscope consumes much more
power than accelerometer, the angular velocity is sampled with
a sampling rate of 100 Hz only when an activity with non-
repeated pattern is detected (details in Section III-C). The
accelerometer on the smartwatch measures all the accelera-
tions that affect the device, which also include the gravity.
However, in ActDetector, to detect a user’s daily activities,
we are only interested in the acceleration which is associated
with the movement of the smartwatch. Therefore, a low-pass
filter is applied to subtract the gravity components along X,
Y and Z axis from the raw accelerometer data. For simplicity,
in the remainder of this paper, we use acceleration to denote
the filtered acceleration without the effect of gravity.

B. Preferred Wrist Detection

When a user performs a certain daily activity (e.g., walking,
running, etc.), the movement of his/her wrist follows some
patterns. By collecting accelerometer data from the wrist-
worn smartwatch, ActDetector is able to capture the wrist
movement patterns, and further detect which activity the user
is performing. Although it is common for users to wear the
smartwatches on the wrists, their preferred wrists may be
different (i.e., some users prefer wearing smartwatches on



their left wrists, while others prefer the right wrists). During
a certain daily activity, the acceleration data obtained on the
left wrist will be different from that obtained on the right
wrist. Therefore, before using the accelerometer data to detect
activities, ActDetector should detect whether the smartwatch
is worn on the user’s left or right wrist.

Figure 2 shows the magnitude of the total acceleration
by combining the three accelerations along X, Y and Z
axis (denoted as ax, ay, az respectively) when a smartwatch
user starts an app. As can be seen, there are normally three
wrist movement phases when a user starts an app: wrist up,
interaction with smartwatch and wrist down. In the phase
of wrist up, the user moves his/her preferred wrist (i.e., the
one with the smartwatch worn on) towards his/her body and
hold it for a while in front of his/her face to start the app.
After opening the app with voice commands or touchscreen
in interaction with smartwatch, the user moves his/her wrist
down towards the other side of the body in the third phase
wrist down. In both wrist up and wrist down, the magnitude of
the total acceleration on the preferred wrist rises up and drops
down very quickly in a short period. However, the moving
directions of different wrists are just opposite (i.e., the left
wrist moves from left to right in wrist up and from right to
left in wrist down, while the right wrist moves the opposite
way). Therefore, by analyzing the acceleration variation on
the wrist when an app is started, we can detect wrist up and
wrist down, and then infer on which wrist the smartwatch
is worn. However, to detect wrist up, a daemon process
which continuously collects accelerometer data is necessary
because it is difficult to know when the user will start an
app. Different from wrist up, the phase of wrist down starts
after the app is opened, which has a deterministic starting
point. Therefore, in ActDetector, we have the system started
collecting accelerometer data once it is opened and detecting
the user’s preferred wrist by analyzing the phase of wrist down.

Figure 3 depicts the magnitude of the total acceleration and
X axis acceleration during wrist down when the smartwatch
is worn on the left and right wrist respectively. As shown in
the bottom figures, since the X axis acceleration is obtained
based on the smartwatch’s local coordinate system and in
this coordinate system the left and right wrist moves towards
different directions along the X axis during wrist down, most
of the X axis acceleration values are negative on the left
wrist and positive on the right wrist. Therefore, to detect
the preferred wrist, we first detect the period of wrist down
and then check whether the X axis acceleration is positive
or negative during this period. In practice, after the wrist is
put down, it will shake slightly for a little while rather than
becoming still immediately, which makes it difficult to detect
the endpoint of wrist down. For simplicity, in ActDetector, we
detect the first half of wrist down where the magnitude of the
total acceleration increases. After ActDetector is started, the
accelerations along the three axes ax, ay and az are collected
and the total acceleration a is calculated. Then a Moving
Average Filter [14] is used to filter out the noise in the total
acceleration as shown in the middle figures of Figure 3. In the
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Fig. 3: The accelerometer data during wrist down when the smart-
watch is worn on the left and right wrist respectively.
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Fig. 4: Activity detection process.

filtered data set of the total acceleration, ActDetector detects a
continuously increasing data sequence whose length is larger
than a predefined threshold δ (δ is set to 10 in our system)
and marks [ts, te] as the time period of the first half of wrist
down, where ts and te are the time stamps of the beginning
and ending of the detected data sequence. Then, the X axis
acceleration in [ts, te] is analyzed to detect the preferred wrist.
To avoid the effect of the noise, we calculate the average ax
sampled in [ts, te] (denoted as ax), and as shown in the bottom
figures of Figure 3, the preferred wrist is detected as left if
ax < 0 and right otherwise.

In ActDetector, two sets of parameters are trained based
on the training data collected from left wrist and right wrist
respectively. Once the preferred wrist is detected, the particular
set of parameters is used for activity detection. For the
remainder of the paper, the system is illustrated based on the
assumption that the sensor data is collected from the user’s
preferred wrist.

C. Daily Activity Detection

After the preferred wrist is detected, the sensor data is
sampled and segmented to detect 8 common daily activi-
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Fig. 5: The accelerometer data along three axes during sitting.

ties, including sitting, walking, running, going upstairs, going
downstairs, eating, driving and sitting in a vehicle (denoted as
sitting, walking, running, upstairs, downstairs, eating, driving
and vehicle respectively). As shown in Figure 4, a few time
domain features are firstly extracted to detect sitting since it is
a predominant activity in a user’s daily life and can be easily
detected with little computing resource. Then, autocorrelation
is calculated to classify the activities as those with repeated
patterns (i.e., walking, running, upstairs and downstairs) and
with non-repeated patterns (i.e., eating, driving and vehicle).
Lastly, Support Vector Machine (SVM) is applied to each
category to classify all the activities.

1) Sensor Data Segmentation: In order to extract features
for classification, a common practice is to segment the sensor
data into frames. In our implementation, the sampled sensor
data is segmented into 1-second frames. Although frame
based features are able to capture some characteristics of the
activities, they are insufficient to distinguish different activities
accurately since the characteristics of some activities like
eating or driving may be involved in multiple frames longer
than 1 second. Therefore, after the samples are framed, we
group every 8 continuous frames together as a window. Both
frame based and window based features are extracted for
activity detection.

2) Sitting Detection: Among all the predefined activities,
sitting happens much more often than others. As observed,
many people spend most of their daily time sitting at desks or
in front of computers for study or work, especially for those
who work at offices. To detect this predominant activity, a
lightweight scheme is designed where only a few time domain
features need to be extracted from the accelerometer data.

Figure 5a depicts 120-second long accelerometer data along
the X, Y and Z axis when a user is sitting at the desk, and
to show it more clearly, the first 50-second data is zoomed
in and shown in Figure 5b. As shown in these figures, since
a user’s wrist remains still for most of the time in sitting,
the corresponding accelerations along all three axes are close
to 0 and vary slightly. These characteristics can be captured
by two wildly used statistical measures: mean and variance.
Therefore, for each frame f , we calculate its mean and vari-
ance along each axis ax (denoted as meanax(f) and varax(f)
respectively) and set two thresholds γmean

ax and γvarax to detect
sitting frame. Any frame f with |meanax(f)| < γmean

ax and
varax(f) < γvarax will be detected as a sitting frame. In
our implementation, the thresholds γmean

x , γvarx , γmean
y , γvary ,

γmean
z and γvarz are empirically set to 0.15, 0.01, 0.15, 0.01,

0.15 and 0.01 respectively.
In practice, when a user is sitting, although his/her wrist

will stay still for most of the time, it may move occasionally.
As shown in Figure 5a, there is a wrist movement around the
60-th second caused by the change of sitting position, while
the user is still in sitting. Since this kind of wrist movement
lasts very shortly (less than 4 seconds as observed from our
dataset), we classify the activity contained in a window as
sitting as long as more than half of the frames in the window
are sitting frames. If a sitting activity is detected, the sampling
window is labeled and discarded; otherwise, it is preserved for
further processing.

3) Repeated Pattern Detection: Sitting activities can be
detected with little CPU and power consumption as described
above. If an activity is not sitting, more features need to be
extracted and more precise schemes are needed to classify it.
However, it is difficult to design only one classifier to accu-
rately classify all the rest of 7 activities. As shown in Figure
6, among the remaining activities, some are with repeated pat-
terns, such as walking, running, upstairs and downstairs, and
some are not, such as eating, driving and vehicle (denoted as
repeated and non-repeated activities respectively). Therefore,
before feeding the preserved sampling window into a classifier,
we first detect whether it contains a repeated activity or a non-
repeated activity.

We use autocorrelation [15] for repeated pattern detection
in our system. In signal processing, autocorrelation is the
cross correlation between a signal and itself with different
shifts. For a series of sensor samples {s1, s2, ..., si, ..., sN},
the autocorrelation with shift k is defined as:

R(k) =

∑N−k
i=1 sisi+k∑N

i=1 s
2
i

where the denominator
∑N

i=1 s
2
i is used for normalization.

According to the definition, autocorrelation measures the
similarity between a segment and a shifted version of itself.
It can be proved that R(k) is maximized when the sensor
samples overlap itself (i.e., k = 0). As shown in Figure 7, if the
sample sequence is periodic with period T , when the shift k =
mT (m ∈ Z), there is overlap between the sample sequence
and its shifted version, and autocorrelation at these points will
be large. Otherwise, if the sample sequence is non-periodic,
autocorrelation will gradually decrease as k increases.

As observed in our data set, for repeated activities like walk-
ing, running, upstairs and downstairs, their periods are less
than 1.5 seconds. Thus, in our implementation, we calculate
the autocorrelation of the first 180 samples in a window (i.e., 3
seconds) with shift k increasing from 1 to 90 (i.e., 1.5 seconds)
to detect the repeated pattern. After the autocorrelation is
calculated, peak detection algorithms [16] can be used to
detect if there are peaks in the autocorrelation or not. If peaks
are detected, the window contains a repeated activity and the
period is the corresponding k where the first peak occurs;
otherwise, the window contains a non-repeated activity. Then,
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Fig. 6: The accelerometer data along X axis for repeated and non-repeated
activities.
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and a non-repeated activity (eating) respectively.

TABLE I: Features extracted in ActDetector.
Feature Description Category

mean acc the mean of the acceleration along each axis

repeated activities and
non-repeated activities

var acc the variance of the acceleration along each axis
cov acc the covariance between the acceleration along each pair of axes

sc the spectral centroid of the FFT spectrum for the acceleration along each axis
sr(λ) the spectral rolloff of the FFT spectrum for the acceleration along each axis

period the period detected in the acceleration along each axis repeated activities
mean gyro the mean of the angular velocity along each axis

non-repeated activitiesvar gyro the variance of the angular velocity along each axis
cov gyro the covariance between the angular velocity along each pair of axes

based on the detection result, the corresponding classifier is
applied to identify the activity contained in the window.

4) Feature Extraction and Classification: Extracting the
proper features is important for classifying activities in each
category. In our system, both time-domain and frequency-
domain features are extracted. As listed in Table I, for time-
domain features, we extract the mean and variance of the
sensor data along each axis. In addition, the covariance
between sensor data along every two different axes is extracted
to describe the relationship between motions on these two
axes during a certain activity. For repeated activities, the
period detected in the previous step is also considered as a
time-domain feature. The frequency-domain features spectral
centroid and spectral rolloff are extracted based on the Fast
Fourier Transform (FFT). Let pi (i = 1, 2, ..., n) denote the
normalized magnitude of the i-th frequency bin obtained by
using FFT, and spectral centroid [17] sc is calculated as:

sc =

∑n
i=1 i · p2i∑n
i=1 p

2
i

Given a threshold λ (0 < λ < 1), spectral rolloff sr(λ) is
calculated as:

sr(λ) = max(h|
∑h

i=1 pi∑n
i=1 pi

< λ)

Spectral centroid measures the centroid of the spectral power
distribution, and spectral rolloff measures the frequency bin
below which λ of the spectral power is concentrated. In our
system, λ = 0.1, 0.5, 0.9 and 3 spectral rolloff values are
extracted.

Due to the periodicity, the characteristics of activities like
walking, running, upstairs and downstairs can be captured
from a sampling window of acceleration, and the above time-
domain and frequency-domain features extracted from ac-
celerometer data can be utilized to classify repeated activities

accurately. However, for non-repeated activities, using only
accelerometer data is insufficient to distinguish each activity
accurately. To improve the classification accuracy for non-
repeated activities, we also collect sensor data from the gyro-
scope, which measures angular velocities along three axes in
the smartwatch’s local coordinate system. As shown in Table I,
only time-domain features are extracted from gyroscope data.

After features are extracted, SVM classifiers are trained
to classify repeated and non-repeated activities. SVM is an
effective supervised learning scheme in machine learning, and
it has been widely used in different kinds of classification
problems [18]. In our system, we use one-against-one strategy
to build multi-class SVM classifiers to classify repeated and
non-repeated activities.

Since most of the activities detected in our system are
continuous, it is highly unlikely to have an activity interrupted
by another activity which lasts very shortly. For example,
it is not likely to have a sequence of windows containing
activities like sitting, sitting, sitting, driving, sitting, sitting.
Therefore, after windows sampled in 30 minutes are processed
and labeled, the detection results are checked again and the
isolated window whose predicted label is different from those
of the prior and successive two windows will be relabled
the same as its neighboring windows (e.g., in the previous
example, driving will be relabled as sitting).

IV. IMPLEMENTATION

Sony Smartwatch 3 is chosen in our implementation, using
Android Wear 1.3. When ActDetector is started, a sampling
thread starts the accelerometer and begins reading data at
60 Hz. The accelerometer on Sony Smartwatch 3 can work
at this sampling rate when it is registered in Android Wear
OS with the parameter SENSOR DELAY GAME. Once the
accelerometer data is sampled, a simple low-pass filter is



applied to the raw data immediately to filter out gravity. This
low-pass filter is always executed as long as accelerometer
data is sampled. The filtered sensor data is then buffered
and processed by a thread for preferred wrist detection. After
the preferred wrist is detected, the buffered accelerometer
data is dropped and the corresponding configurations for the
particular wrist are chosen and used for the rest of time.

From then on, once 480 acceleration samples (i.e., 8 sec-
onds) are collected by the sampling thread, they are fed to
a processing thread as a window for activity detection. The
processing thread segments the window into frames of 60
samples and calculates mean and variance for each frame. The
predefined mean and variance thresholds illustrated in Sitting
Detection are utilized to detect if a frame contains sitting
or not. If more than 4 frames contain sitting activities, the
window is labeled as sitting and the samples are discarded;
otherwise, the window is preserved for further processing.
For the preserved window, the autocorrelation of the first 180
samples (i.e., 3 seconds) with shift increasing from 1 to 90
is calculated to detect if the window contains activity with
repeated pattern or not. Whether repeated pattern is detected
or not, the window level time-domain and frequency-domain
features are extracted and the SVM classifier is used to classify
the activity contained in the window. However, if no repeated
pattern is detected, the gyroscope will be started and features
extracted from angular velocity will be used in the next
sampling window. After a window is processed, the samples
are discarded and the processing thread ends. The predicted
labels are stored in a buffer. When 225 windows (i.e., 30
minutes) are processed, a recording thread checks the predicted
labels in the buffer, and relabels the isolated window whose
label is different from its prior and successive 2 windows.
Then, the labels and the system times for the corresponding
windows are written into a file for record.

In the processing thread, different SVM classifiers are used
in different cases. To save the smartwatch’s CPU and power,
all the SVM classifiers in ActDetector are trained offline using
Libsvm [19], and the support vectors and the coefficients are
then provided to the processing thread for classification. De-
pending on the preferred wrist detection result, the classifiers
built based on training data collected from the preferred wrist
will be chosen. To classify a non-sitting activity, a classifier
consisting of 6 binary SVMs is trained based on accelerometer
data if the activity is repeated, and a classifier consisting of 3
binary SVMs is trained based on accelerometer and gyroscope
data otherwise. Since gyroscope consumes more power than
accelerometer, the sampling thread starts the gyroscope only
when a non-repeated activity is detected. However, for the
first window containing non-repeated activity, it only has
accelerometer data. Since this happens rarely, in our imple-
mentation, this window is labeled the same as the following
one. While the gyroscope is working, if sitting or a repeated
activity is detected, the sampling thread stops the gyroscope
to reduce power consumption.

Since activities like sitting, walking, running, eating, driving
and vehicle will usually last for minutes or even hours, we can

use duty cycle to save power and increase the smartwatch’s
battery life. If 5 continuous windows contain the same activity
which may last for a while, the system enters a duty cycle
state in which only one in every 3 windows is processed (i.e.,
8 seconds out of every 24 seconds). If a window processed
in the duty cycle state is detected as containing a different
activity from the previous one, the system goes back to the
normal state. The performance of using different duty cycles
is evaluated in Section V.

V. PERFORMANCE EVALUATIONS

A. Experimental Setup

In order to collect sensor data and the ground-truth la-
bels for the corresponding activities, two schemes are used
in most of the existing works [7], [20], [21]. In [20], the
sensor data is collected by smartphones automatically while
users are performing some activities in their daily lives, and
then users are asked to annotate and label their activities to
provide ground truth. In [7], [21], to collect sensor data for a
certain activity, users are asked to perform this activity under
supervision in lab environment, and then smartphones are
started for data collection. However, both of these schemes
have disadvantages. For the first scheme, the labels for the
activities may be incorrect due to users’ carelessness or poor
memories. For the second scheme, the sensor data may not
reflect the activity accurately since a user may perform an
activity under supervision in lab environment differently from
that in his/her daily life. Therefore, we designed our own
scheme to collect sensor data with ground-truth labels through
a smartwatch based app DataCollector.

As shown in Figure 8, there are 10 buttons in DataCollector:
2 at the top and 8 at the bottom. For the 8 buttons at the
bottom, each represents one of the 8 daily activities predefined
in ActDetector, and the app will start sampling the sensors
once the button is clicked. During the experiment, we ask
the user to click the corresponding button when he/she is
performing some activity, and then click the REC button at
the top to write the collected data into a SD card with a
file name indicating the corresponding label when this activity
ends. In practice, users may forget to click REC until they find
that they have already been in another activity. In this case,
we ask the user to click DEL at the top to erase the sensor
data which has been sampled most recently. In this way, the
accuracy of the sensor data and the corresponding ground-truth
labels can be guaranteed, and the users do not have to perform
activities under supervision. In the design of ActDetector, to
save power, gyroscope data is only collected if a non-repeated
activity is detected. However, at the stage when we collect
preliminary data for offline training and testing, we do not
know which activity will be detected as non-repeated. Thus,
in DataCollector, both accelerometer and gyroscope data is
collected for each activity.

12 users (5 females and 7 males) were recruited to par-
ticipate in our experiment, and each of them was given a
Sony Smartwatch 3 with DataCollector installed. During the
experiment, users were asked to wear their smartwatches every



TABLE II: The overview of the experimental data collected from
12 users.

Activity Duration (left wrist) Duration (right wrist)
sitting 1,096 min 1,235 min

walking 396 min 314 min
running 112 min 142 min
upstairs 26 min 27 min

downstairs 24 min 23 min
eating 168 min 348 min
driving 308 min 233 min
vehicle 387 min 462 min

TABLE III: The overall detec-
tion results.

Activity TPR PPV
sitting 0.962 0.943

walking 0.928 0.944
running 0.935 0.964
upstairs 0.870 0.857

downstairs 0.838 0.816
eating 0.758 0.830
driving 0.824 0.911
vehicle 0.884 0.851

Fig. 8: The screenshot of Data-
Collector.

day and used DataCollector to record sensor data when they
performed the predefined activities. We asked each user to
wear the smartwatch on the left wrist for one week and then on
the right wrist for another week. After each week’s experiment,
the user returned the smartwatch and we read sensor data
from the smartwatch’s SD card. The experiment has been
approved by our IRB (Institutional Review Board), and the
data collected in the experiment is shown in Table II.

B. Overall Detection Performance

After gathering the sensor data and the corresponding
ground-truth labels from users, the detection accuracy of
ActDetector is cross validated by using Leave-one-user-out
strategy. At each time, data collected from 11 users is used as
training data to train classifiers for repeated and non-repeated
activities, and data from the remaining user is used for testing.
This process is repeated 12 times so that each user’s data
is tested once. During training, data collected from left and
right wrist is processed independently to train classifiers for
different wrists. During testing, the preferred wrist is detected
based on the accelerometer data collected at the beginning of
each testing data file, and then the corresponding classifier is
used for classification. The classification results are averaged
to evaluate the overall detection accuracy.

The detection results are shown in Table III, using True
Positive Rate (TPR) and Positive Predictive Value (PPV). For
a certain type of activity, its TPR is defined as the ratio of the
number of true positives (i.e., the activities which are correctly
identified as such type) to the number of actual positives (i.e.,
such type of activities which are actually in the test set),
and its PPV is defined as the ratio of the number of true
positives to the sum of the number of true positives and false
positives (i.e., the activities which are identified as such type
but actually not). As can be seen, most of the activities can be
detected with accuracy more than 82%. Due to their distinctive
characteristics, more than 92% of sitting, walking and running
are accurately detected. Generally speaking, repeated activities
have larger TPR values than non-repeated activities because of
their periodicity. Since the user’s wrist may stay still some time
during eating, many eating activities are misclassified as sitting
and the TPR of eating (75.8%) is very low. Comparing with
other repeated activities, running contains repeated pattern
with shorter period and larger acceleration variance, and thus
it is detected with higher accuracy (93.5%).
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Fig. 9: TPR and PPV of each activity when using ActDetector and
Jigsaw respectively.

Since there is no similar work which uses smartwatch
to detect these 8 daily activities, we compare ActDetector
with Jigsaw, a smartphone based activity detection approach
proposed in [12], which detects sitting, walking, running
and vehicle. For upstairs, downstairs, eating and driving, we
segment the sensor data and extract the features as described
in [12] for comparison. Figure 9 shows the overall detection
results of ActDetector and Jigsaw, where the 8 activities are
denoted as s, w, r, up, dn, e, d and v respectively. As can
be seen, ActDetector has larger TPR and PPV than Jigsaw in
general, especially for upstairs, downstairs and non-repeated
activities. In Jigsaw, since many upstairs and downstairs
activities are misclassified as walking, detection accuracies
of these two activities are worse than many other activities.
However, comparing with Jigsaw, these two activities are
detected more accurately in ActDetector due to the usage
of the feature period, which can effectively distinguish them
from walking. For non-repeated activities, ActDetector can
detect them more accurately than Jigsaw because unlike
Jigsaw, where only accelerometer data is used, ActDetector
also collects gyroscope data for detecting these activities.

C. Training Datasets

For a specific user, the classifiers used in ActDetector can
be trained by different datasets: dataset collected from all the
users and dataset collected only from this user. In order to eval-
uate ActDetector’s detection accuracy when different training
datasets are used, we collect two more weeks’ data from a user
in our experiment. ActDetector is trained based on the first
two weeks’ data of all the users and data of this particular
user (denoted as universal and individual respectively), and
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Fig. 10: TPR and PPV of each activity when using different training
datasets.

TABLE IV: Power consumption of different activities when using
ActDetector and Jigsaw.

Activity Power consumption
ActDetector Jigsaw

sitting 38.99 mW 77.18 mW
repeated activities 52.58 mW 80.55 mW

non-repeated activities 117.95 mW 82.73 mW

is tested by the new data collected from the user. Figure
10 shows the detection results of ActDetector when using
different training datasets. As can be seen, most activities have
larger TPR and PPV values in individual than in universal,
indicating that more activities are accurately classified and
less are misclassified when changing the training datsets from
universal to individual. This is because the features extracted
from a specific user’s sensor data are more distinctive and
stable than those extracted from all users’ data, and thus they
are better to describe and recognize the characteristics of this
user’s activities.

D. Power Consumption

Table IV shows the average power consumption when
using ActDetector and Jigsaw to detect different types of
activities (i.e., sitting, repeated activities and non-repeated
activities). As can be seen, for Jigsaw, because it extracts
the same features and uses the same classification algorithm
for all activities, its power consumption for different kinds of
activities does not vary too much. However, this is different
for ActDetector. As shown in the table, for ActDetector, sitting
detection consumes less power than the other activities because
only two simple time-domain features need to be extracted
for detecting sitting. Comparing with sitting, when detecting
repeated activities, more time-domain and frequency-domain
features need to be extracted, and thus more power is needed.
Since gyroscope consumes more power than accelerometer,
when using ActDetector, the power consumption for detecting
non-repeated activities is larger than that of the other activities.

Comparing with Jigsaw, ActDetector consumes less power
when detecting sitting and non-repeated activities. This is
because in ActDetector, we carefully segment the sensor data
and choose the extracted features to make it to be light
weight. Although due to the usage of gyroscope, ActDetec-
tor consumes more power than Jigsaw when detecting non-

0 2 4 6 8 10
30

40

50

60

70

80

90

100

Time (h)

R
em

ai
ni

ng
 b

at
te

ry
 (

%
)

 

 

ActDetector
Jigsaw

Fig. 11: Power consumption when using ActDetector and Jigsaw in
daily lives.

repeated activities, it improves the detection accuracies for
these activities (shown in Figure 9). Additionally, comparing
with non-repeated activities, sitting and repeated activities
(e.g., walking) are more predominant in a user’s daily life.
ActDetector can detect these predominant activities with litter
power, and thus it is power efficient.

To evaluate the system’s overall power consumption, we
asked a user to wear a smartwatch (Sony Smartwatch 3) with
ActDetector and Jigsaw running respectively, and record the
remaining battery every two hours. The smartwatch is fully
charged and set to airplane mode during the experiment, and
the results are shown in Figure 11. As can be seen, ActDetector
consumes less power than Jigsaw when the smartwatch is used
in daily lives. For a 10-hour experiment, it consumes only
about 40% of the battery, while Jigsaw consumes about 60%
of the battery. Our experiment shows that ActDetector can
work more than one day on Sony Smartwatch 3.

E. Duty Cycles

Since most activities detected in ActDetector will usually
last for minutes or even hours (e.g., sitting, walking), we
use duty cycles to save power and increase the smartwatch’s
battery life. However, long duty cycle may have negative
impact on the detection accuracy. In order to investigate the
trade-off between detection accuracy and power consumption,
we concatenate half of the collected data files as testing data
and use different duty cycles to evaluate ActDetector, which
is trained by the other half of the data. Figure 12 shows the
overall detection accuracy and the average power consumption
when ActDetector processes sampling windows in different
intervals. In Figure 12a, the accuracy is calculated as the ratio
of the number of activities that are correctly detected to the
total number of activities. As can be seen, although the power
consumption decreases when the process interval increases,
the detection accuracy also drops dramatically. Only less than
50% of activities can be detected when the process interval is
19 (i.e., one out of every 20 sampling windows is processed).
This is because when long duty cycle is used, one misclassified
activity will cause many following windows that contain the
same activity being labeled incorrectly. In addition, even the
activity contained in a window can be correctly classified,
many windows will still be mislabeled if a different activity
starts just after this window is processed. As shown in Figure
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Fig. 12: Detection accuracy and power consumption with different
duty cycles (each sampling window contains 8-second sensor data).

12, comparing with the scheme without duty cycle (i.e., the
process interval is 0), when the process interval is 2, the
detection accuracy is still high but the power consumption
can be largely reduced. Therefore, in our implementation, the
process interval was set to 2.

VI. RELATED WORK

Radio based activity detection has been proposed in previ-
ous works. In [6], micro-doppler radars were used to detect
activities by measuring the movement speeds of different
parts of body when different activities were performed. Since
human activities can affect Channel State Information (CSI) of
wireless signals, CSI based approaches have been proposed in
[7]–[10] to detect various activities. However, these systems
rely on the wireless devices installed indoor, which makes
them unsuitable for detecting activities outdoor.

Motion sensors have also been used to detect users’ daily
activities in previous works. In [11], Matthew et al. built an
activity recognition system called Practical Body Networking,
in which several activities were detected by using acceleration
sampled from 5 Crossbow motes attached to a user’s head,
wrists and ankles. However, to make the system work, users
have to wear multiple sensor nodes, which is inconvenient and
difficult to implement in practice.

Smartphones are equipped with various sensors including
accelerometer and gyroscope, and they have been used for
activity detection in some research. In [13], Nicholas et al.
proposed techniques for large-scale human activity inference
by incorporating inter-person similarity measurements into
the classifier training process. In [12], accelerometer data
was collected from smartphone and different classification
algorithms were implemented for activity detection. However,
in these systems, the detection accuracy relies much on the
position of the smartphone.

VII. CONCLUSION

In this paper, we proposed ActDetector, a smartwatch based
application which detects 8 daily activities. By leveraging the
built-in sensors on smartwatch, a multi-level classification sys-
tem is designed which considers both detection accuracy and
energy efficiency. A few time-domain features are extracted
from the accelerometer data to detect the predominant activity
sitting, and then more features are utilized to identify other

activities. We have implemented ActDetector on Sony Smart-
watch 3 and evaluated its performance in real experiments.
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