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Abstract

Content sharing through vehicle-to-vehicle communica-

tion can help people find their interested content on the road.

In VANETs, due to limited contact duration and unreliable

wireless connection, a vehicle can get the useful data only

when it meets another vehicle and the encountered vehicle

has the exactly matched data. However, the probability

of such case is very low. To improve the performance of

content sharing in intermittently connected VANETs, we pro-

pose a novel P2P content sharing scheme called Roadcast.

Roadcast ensures popular data is more likely to be shared

with other vehicles so that the overall query delay and

the query hit ratio can be improved. Roadcast consists of

two components called popularity aware content retrieval

and popularity aware data replacement. The popularity

aware content retrieval scheme makes use of Information

Retrieval (IR) techniques to find the most relevant and

popular data towards user’s query. The popularity aware

data replacement algorithm ensures that the density of dif-

ferent data is proportional to their popularity in the system

steady state, which firmly obeys the optimal “square-root”

replication rule. Results based on real city map and real

traffic model show that Roadcast outperforms other content

sharing schemes in VANETs.

1. Introduction

The proliferation of low-cost wireless connectivity, com-

bined with the growth of distributed peer-to-peer cooperative

systems, is transforming the next-generation vehicular net-

works. With wireless technology, it is possible to deliver

digital content from roadside infrastructure to drivers and

passengers inside moving vehicles [1]. With the support of

peer-to-peer wireless communication, content can be shared

among vehicles beyond the infrastructure coverage [2], [3].

Supporting content delivery and sharing in vehicular ad

hoc networks (VANETs) can greatly benefit our daily life.

For example, information about road hazards, traffic jams,

and emergency stops can be used to improve traffic safety

and efficiency. Passengers or drivers inside vehicles can

get entertainment or local information such as MP3 music,

sale advertisement, restaurant recommendations or videos of

upcoming attractions.
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Most existing research focuses on various solutions to dis-

seminate some data to other vehicles [2]–[4]. Another impor-

tant problem is to efficiently find the requested data/content

using VANETs. Currently, a user in the VANET can only

get his/her interested data opportunistically, i.e., it gets the

data only when it meets another vehicle which happens to

have the requested data. Obviously, such chances are very

low in VANETs. Although service discovery techniques [5]

are widely used in peer-to-peer networks and wireless ad

hoc networks, it is difficult to apply them to VANETs. This

is because VANETs may be sparsely connected [1], [6],

especially at night or at rural areas, and hence the delay

and communication overhead of finding the requested data

in VANET is much higher.

In this paper, we propose a novel content sharing scheme

(called Roadcast) for VANETs. The motivation of the

popularity-aware content sharing is as follows. If a vehicle

requests popular data which is densely disseminated in the

network, it may take much shorter time than requesting

rare data, because the chance of meeting one vehicle that

has the popular data is much higher. In the opportunistic

and unreliable VANET, we can expect that users are more

willing to get data which roughly matches their interest

with shorter delay than taking a longer delay (and the risk

of not getting it) to get the perfectly matching data. As a

result, it is desirable to give more opportunities to deliver the

data with higher popularity. Getting popular data can also

satisfy the neighboring node’s query and may serve more

vehicles in the future. Thus, we propose to disseminate data

which can balance two objectives: matching users’ query

and increasing data accessibility in the future.

Roadcast achieves these objectives with two techniques:

popularity aware content retrieval and popularity aware

data replacement. First, the popularity aware content re-

trieval scheme makes use of information retrieval (IR)

techniques to find the relevant data towards users’ queries.

But different from the traditional IR techniques, we consider

the factor of data popularity and re-rank the relevance

of the data to queries, and ensure more popular data is

more likely to be shared with other vehicles. Second, in

Roadcast, the downloaded data is stored as replica which

can be shared with other Roadcast users. When the local

memory is full, some data objects have to be replaced.

The proposed data replacement algorithm ensures that the

data replications with different popularity can have different

life time so that popular data can have more, while not



too many, copies in the network. Our analysis shows that

with the proposed data replacement algorithm, the densities

of different data are proportional to their popularity in the

system steady state, which firmly obeys the optimal “square-

root” replication rule [7]. Simulation results show that the

proposed popularity aware content sharing solutions can

reduce the data access delay and improve the query hit ratio

while satisfying the user requirement.

The rest of this paper is organized as follows. Section

2 describes the popularity aware content retrieval scheme.

Section 3 presents the popularity aware data replacement

algorithm used to achieve the optimal data allocation. Per-

formance evaluations are shown in Section 4 and related

work is discussed in Section 5. Finally, we conclude the

paper in Section 6.

2. Popularity Aware Content Retrieval
2.1. Overview

In our popularity aware content retrieval, there are two

important characteristics when vehicles request and retrieve

content from the encountered vehicles.

1) Relevance between content and query.When one query

is issued, it can generally be served by multiple data with

different degree of relevance to the query. Many users do not

necessarily require to get the exact matching content, e.g.

John Lennon’s song called Imagine. Instead they may only

roughly describe their interested content at a coarse level,

and hence they would be satisfied with any content close

to their keyword query descriptor, e.g. any John Lennon’s

songs, or any MP3 rock music.

2) Tradeoff between content relevance and access delay.

A VANET is generally known as an intermittently connected

network, where the network connectivity is opportunistic and

the connection duration is short and unreliable. Users can

only query their encountered vehicles for data. Therefore,

the delay to obtain the perfectly matching content is long.

However, if the user requests can be relaxed a little bit, it

may take much shorter time for the user to get the satisfied

content. Thus, there is a trade-off to get less interested data

(but still nice to have) with better chances or to get perfectly

matching data with smaller chances and longer delay.

Considering the characteristics discussed above, we pro-

pose to give more opportunities to the content with higher

popularity. For instance, when one vehicle receives a content

request from a neighboring vehicle, it returns the most

popular content that is relevant to the request. The returned

content can not only satisfy the neighboring vehicle’s re-

quest, but also serve more vehicles in the future. Thus,

delivering more popular content contributes more to the con-

tent accessibility from the network perspective. In summary,

when Roadcast chooses a data to deliver from one vehicle to

another, the goal is to maximize and balance (1) matching

users’ query, and (2) increasing data accessibility in the

future. Different from other peer-to-peer content delivery

Table 1. An Example of Data Tags
Data Data tags

ID File type Category Other Other Other

Data b0 MP3 Music John Lennon Love /

Data b1 MP3 Music John Lennon Beetles Ono

Data b2 Video Music Pop Mika /

and sharing schemes, the decision on what data to deliver in

Roadcast depends on both the client’s current interest and

the overall demand in the network. A receiver is a content

consumer who also carries the task of sharing the content

with others. Therefore, the data retrieval considers not only

serving the current receiver but also potentially serving more

users in the future.

In Roadcast we extend the classical Information Retrieval

(IR) algorithm to realize the popularity aware content re-

trieval in VANETs. Searching data objects based on key-

words has been extensively studied in the IR community [8],

[9]. However, their solutions are centralized and data acces-

sibility is not an issue in their environments. In Roadcast,

the basic idea is to leverage the Vector Space Model (VSM)

to find the data that matches user’s query, and also consider

data popularity. Thus, Roadcast may not always deliver the

best matching data for a reply, instead it can deliver a less

matching data if the data is more popular. Therefore more

popular data is given more opportunities to be shared with

others.

In the following, we first describe how to use VSM to

find the data that matches users’ query, and then improve

the solution by considering data popularity.

2.2. Matching Queries Based on VSM

Both data and query can be presented and indexed with re-

source representation techniques such as RDF (i.e., Resource

Description Framework) or WSDL (i.e., Web Services De-

scription Language) based on specific keyword attributes. In

Roadcast we also assume queries are keyword based. Users

enter a sequence of keywords into the Roadcast system to

describe the content they want to retrieve, such as “MP3

music rock John Lennon Imagine”. Similarly, each data

object is associated with multiple tags as the meta-data

description in Roadcast. For example, a MP3 file of John

Lennon’s song Imagine is attached with a tag like “MP3 /

music / rock / John Lennon / Imagine”. The tag of a data

item can be obtained from external sources and pre-loaded

in Roadcast, or added/edited by Roadcast users.

Next, we describe how to use Vector Space Model (VSM)

to find the data that matches user’s query. Suppose there

are m data objects in a vehicle, and each data object is

associated with some keywords as tags (as shown in Table

1). Let n denote the total number of terms that can be used in

the tag and query vocabulary. Then each data object bi can be

represented by a binary vector in the n-dimensional space,

say
−→
bi , whose entry indicates the presence or absence of one

particular term in the tags of data object bi. The entry is “0”

if the term does not occur in the data tag, and “1” otherwise.



Table 2. The VSM Matrix Genera ted For The Example
Data Terms

ID MP3 Video Music Pop John Lennon Mika Ono Beetles Imagine Love ... ...

Data b0 1 0 1 0 1 0 0 0 0 1 0 ... 0

Data b1 1 0 1 0 1 0 1 1 0 0 0 ... 0

Data b2 0 1 1 1 0 1 0 0 0 0 0 ... 0

Query Q 1 0 1 0 1 0 0 0 1 0 0 ... 0

In this way, all data in a vehicle can be represented by a

m × n binary matrix, where every row represents one data

object (shown in Table 2). Similarly, a query can also be

thought as a vector in the same space. Thus, content retrieval

becomes a matter of finding the data vectors in the space

that are closest to the query vector.

1QOb∠

0QOb∠

Figure 1. Similarity of Vectors
To answer a query, the data objects are ranked according

to the similarity between the data vector and the query

vector. A common measure of the similarity between two

binary vectors with the same dimension is to calculate the

number of their overlapped “1”s. However, this method has

bias since the data objects with more terms tend to be ranked

higher than those with fewer terms. We use the angle of two

vectors to represent their similarity, which is able to remove

the bias due to the number of terms. For easy calculation,

the angle of two vectors can be transformed to the cosine

value of the angle. Formally, as shown in Figure 1, given a n-

dimensional term vector of a query Q,
−→
Q = (q1, q2, · · · , qn)

and a data object,
−→
bi = (xi1, xi2, · · · , xin), the similarity

between query Q and the data objects bi can be defined in

Equation 1.

cos(
−→
Q,

−→
bi ) =

−→
Q

⊙−→
bi

|−→Q | · |−→bi |
=

∑n
j=1 qjxij

√

∑n
j=1 q2

j ×
√

∑n
j=1 x2

ij

(1)

If cos(
−→
Q,

−→
b0) > cos(

−→
Q,

−→
b1), b0 is more similar to Q;

otherwise b1 is more similar.

2.3. Popularity Aware Vector Space Model
2.3.1. Adding the Impact of Data Popularity.

In order to give high priority to deliver more popular data,

we assign values to the entries in the VSM matrix according

to the data popularity. We denote the data set of a vehicle as

D = {b0, b1, · · · , bm} and the popularity score of data bi as

fi (fi > 1 and it is proportional to the popularity of bi, the

calculation of fi will be discussed in Section 2.3.2). Suppose

the original VSM matrix, say Am×n, is as following:

Am×n = [aij ]m×n, w.s.t. 0 < i < m, 0 < j < n.

We get the entry in the Popularity Aware VSM (PVSM)

matrix aP
ij = fi × aij . So the new PVSM matrix can be

computed as AP
m×n = [fi × aij ]m×n.

In PVSM, the length of the term vector of data object bi is

scaled by fi according to its popularity. However, Equation

1 uses cosine measure to compute the similarity between the

two term vectors, which normalizes both vectors to compare

the angles of different vector pairs and discards the effect

of the vector length. To add the impact of popularity, we

revise Equation 1 and compute the relevance between the

query vector
−→
Q and the data vector

−→
bi with the production

of their cosine measure and the popularity score, i.e.,

relevance(Q, bi) = cos(
−→
Q,

−→
bi ) × fi

=

∑n
i=1 qi × aij × fi

√

∑n
j=1 q2

j ×
√

∑n
j=1 a2

ij

(2)

Here, we also have another relevance function

relevance′(Q, bi) =

∑n
i=1 qi × aij × fi√

number of non-zero entries in bi

(3)

This function is much simpler and it needs less computa-

tion cost compared to the original relevance function. The

following proof shows that relevance′(Q, bi) is equivalent
to relevance(Q, bi).

Theorem 1. To compare the relevance between any data

object di and a given query Q, the relevance function

relevance′(Q, bi) is equivalent to relevance(Q, bi).

Proof: For a given query Q, the first term of the denomi-

nator in relevance(Q, bi),
√

∑n
j=1 q2

j , is always a constant

value to different data objects. At the same time, in a binary

matrix where the value of each entry is either 0 or 1,

the second term of the denominator in relevance(Q, bi),
√

∑n
j=1 a2

ij , equals to the square root of the number of non-

zero entries in the data vector of data object bi. Then,

relevance(Q, bi) ∝
∑n

i=1 qi × aij × fi
√

∑n
j=1 a2

ij

=

∑n
i=1 qi × aij × fi√

number of non-zero entries in bi

To summarize, relevance′(Q, bi) and relevance(Q, bi) are
equivalent for the relevance comparison. �

Therefore, in Roadcast, we use the simplified

relevance′(Q, bi) instead of the original relevance(Q, bi)
as the relevance function for fast computation.



Table 3. The Storage Index Structure
non zero 4 4 4 4 1 1 1 1 1 2 2 2 2

column 0 2 4 9 0 2 4 6 7 1 2 3 5

row 0 4 9 13

2.3.2. Calculating the Popularity Score fi.

fi is used to represent the popularity of data object bi.

If one data object is more popular, its popularity score fi

should be larger. In our implementation, fi is the estimated

number of times that bi is picked to reply queries during

a given time period. The initial value of fi is set to the

number of times that the data is read by the local user

during a given time period. Since fi changes dynamically,

we use a decay function that gives preference to more recent

accesses and de-emphasizes the significance of past accesses

in prediction. In particular, at the (t+1)-th time period, the

popularity score of bi is defined as

fi(t + 1) = δ × fi(t) + (1 − δ) × F

where F is the number of times that the data is accessed

in the last time period and δ is the decay coefficient. In our

experiments (see Section 4), we set δ = 0.2. fi is recorded

by individual vehicles in a distributed way. Thus, different

vehicles may have different fi for the same data object bi.

2.3.3. Using Sparse Matrix Algorithm to Optimize In-

formation Storage and Relevance Calculation.

In VSM, the entry aij indicates the presence or absence

of term i in data object bj . To precisely describe a query,

the terms’ pool can be a vocabulary dictionary in which the

number of terms is quite large. Consequently, the size (the

number of columns) of the PVSM matrix becomes huge,

increasing the overhead for calculating the similarity and

storing these data. We observe that PVSM is actually a

sparse matrix where only a small number of keywords are

used to represent data and query while most others are absent

in vector (i.e., 0). Hence, we can apply some techniques to

optimize the data storage and relevance calculation.

Storage optimization: The sparse matrix stores only non-

zero entries to save space. The index structure is stored in

three sparse vectors. The first vector stores non-zero entries

of the sparse matrix. The weight (fi × aij) in a particular

data represents the importance of a term in a data. Hence we

store all non-zero (fi×aij) for each element in the first non-

zero vector. The second vector is the column vector, where

each entry stores the term identifier or the column index for

the corresponding term in non-zero vector. The third vector

is the row vector that consists of pointers to each row of the

matrix. The row vector consists of only one entry for each

row of the matrix and the value of each entry is the position

of the first non-zero entry of each row in the non-zero vector.

For example, the storage index structure of Table 2 can be

shown in Table 3, with data objects b0, b1, b2 and query Q.

It saves memory space because it stores only non-zero entry

and only one entry for each row of the matrix.

Calculation optimization: The algorithm to optimize the

computation overhead is shown in Algorithm 1. It starts

Algorithm 1 : Relevance Calculation with the Vector

Matrix Multiplication Algorithm

1: Input:
2: M: Number of data in the memory;
3: non zero vector[]: weight of each non-zero element;
4: row vector[]: position of the first non-zero element of each row;
5: col vector[]: column of non-zero element in non zero vector;
6: Query[]: query
7: Output:
8: Relevance[]: the relevance value of each data object to the query;
9:
10: FOR (count = 0; count < M ; count + + )
11: temp = 0;
12: FOR (row = row vector[count];

row <= (row vector[count + 1] − 1);
row + +)

13: col = col vector[row];
14: temp = temp + non zero vector[row] × Query[col];
15: END FOR
16: Relevance[count] = temp/sqrt(row vector[count + 1]−

row vector[count]);
17: END FOR

Table 4. Query Process ing and Relevance Ranking
ID Relevance Score Ranking

b0 (4 × 1 + 4 × 1 + 4 × 1 + 4 × 0)/
√

4 = 6 1

b1 (1 × 1 + 1 × 1 + 1 × 1 + 1 × 0 + 1 × 0)/
√

5 = 1.34 2

b2 (2 × 0 + 2 × 1 + 2 × 0 + 2 × 0)/
√

4 = 1 3

by scanning the first value in vector non zero vector[].

This is the first non-zero term in the first data vector. If the

corresponding term appears in the query vector Query[],

this value is added to the relevance function and it continues

to scan the next non-zero value; otherwise it just continues

the scan. When all non-zero terms of one data object are

scanned, the final relevance value of this data object can

be calculated by dividing the current relevance value by the

square root of the number of non-zero terms in the data

vector. Clearly, the computation complexity is O(n), where
n is the number of elements in non zero vector[].

The optimization can accelerate the query-data relevance

calculation and save memory space. Using Algorithm 1 and

the storage index of Table 3, the result of query processing

and relevance ranking of the example (Table 2) are shown

in Table 4. As can be seen, although data b0 and b1 both

match three keywords of query Q, data b0 has a higher

relevance ranking due to its higher popularity factor and

more concentrated terms.

3. Popularity Aware Data Replacement

In the previous section, we proposed techniques to have

popular data maintain a high density in the network. At the

same time, we need to make sure that popular data should

not be replicated too aggressively. Cohen and Shenker [7]

show that the square-root data allocation strategy, where the

number of data replications is proportional to the square root

of their popularity, has the optimal replication performance

in minimizing the query cost. In Roadcast, we propose a

simple and cost-effective solution that can help achieve the

square-root data allocation by using local data replacement.



3.1. Overview

In Roadcast each data object is stored locally after it

has been downloaded to serve local requests. Each buffered

data is associated with a cost value, which is proportional

to the time delay to get the data. Intuitively, if a data

object has more replications in the network, it will be

easier to find and its access cost (delay) is low. When the

memory is full, the data with the lowest cost value will be

replaced by the newly obtained data. The idea of our data

replacement comes from the GreedyDual-Size algorithm

proposed by Cao and Irani in [10], which is used for web

cache replacement. However, GreedyDual-Size could not

capture and leverage the knowledge of the long-term access

frequencies of different data. Recent studies have shown the

prevalence of Zipf-like distributions in data access, which

implies that the probability of future access depends on

past access frequencies. Therefore, in the popularity aware

data replacement algorithm, we incorporate the temporal

popularity factor. Different from the web cache replacement

algorithms, we use the latest retrieval delay to represent the

access cost. The proposed data replacement algorithm can

help replace the most suitable data and achieve the global

optimal data allocation in a distributed way.

3.2. The Algorithm

We incorporate the temporal popularity factor (i.e., ac-

cess frequency) into the original GreedyDual-Size algorithm

through the use of a new cost value for each data. In

Roadcast, the cost value Hi of data object bi is defined as

the expected normalized cost saving as a result of having

data bi locally, i.e.,

Hi =
ci × fi

si
(4)

where fi is the popularity score (defined in Section 2.3.2)

of data object bi, ci is its estimated retrieval cost (i.e., last

retrieval delay), and si is the size of the data bi.

A new value L, which equals to the lowest H value of

all the data in local memory, is used as the “inflation” value

in data replacement. When a new data is brought in, its H

value is set as its normalized access cost plus the L value.

At the same time, if there is no memory space left, the data

with the lowest H has to be evicted and L is set to this H .

Based on this algorithm, intuitively, if a data object has

a higher retrieval delay due to its low replication density,

based on this data replacement algorithm, it will be able to

stay local for a longer time. Meanwhile, a data object with

high density in the network is more likely to be obtained

from neighboring vehicles. Its retrieval cost is low and its

initial Hi will be small, which means it may be evicted

easily. With this algorithm, the number of replications of

different data objects is controlled by the popularity factor.

Theorem 2. The popularity aware data replacement algo-

rithm can achieve the optimal square-root data allocation.

Proof: Assume the network consists of n vehicles, each

with average capacity ρ which is the number of data objects

that the vehicle can hold. Let ri denote the number of

replications of one particular data object bi. Then the density

of data bi, denoted as di, equals to
ri

n×ρ . It is easy to see

that di is a random variable evolving over time. When the

replications of the data are evicted from the network, di

decreases. When new copies are replicated in the system, di

increases. It is not hard to see that when the local memory is

occupied by data replications,
∑n−1

i=0 di = 1. Then we have
a dynamic system with a differential equation:

ddi

dt
= −αdi + β × fi

di
(5)

where α (0 < α < 1) is the rate at which the data copies
are evicted, and β is the density increasing constant. In

Equation 5, −αdi, indicates random copies are evicted and

the density decreases linearly, and β × fi

di

represents each

request for data bi results in an increase of the density.

The increase is proportional to both the access frequency

fi and its life time. In particular, the expected lifetime is

proportional to the expected access cost (i.e., retrieval delay)

in Equation 4. With the assumption that each vehicle queries

its encountered vehicles to check if they have its interested

content, the retrieval delay of one specific data object bi

through such blind search is inversely proportional to the

number of data replications (ri) in the network, which is

also proportional to the density of bi (di), i.e.,

life time of data object bi ∝ ci ∝
1

ri
∝ 1

di
(6)

By setting ddi

dt = 0 in Equation 5, we can get the
equilibrium point of this equation, i.e.,

ddi

dt
= −αdi + β × qi

di
= 0 ⇒ di ∝

√

fi (7)

The result of Equation 7 shows that the nonlinear system

(Equation 5) converges to the square-root allocation at its

steady state. Therefore, by using the proposed popularity

aware data replacement algorithm, the data allocation obeys

the optimal square-root rule. �

4. Performance Evaluations
In this section, we evaluate the performance of the pro-

posed Roadcast content sharing scheme and compare it to

other solutions.

4.1. Simulation Setup

In our simulation setup, vehicles move within a fixed

region of 3km× 3km. Each vehicle can initiate queries for

its interested content. If the query cannot be served locally,

it is sent to other encountered vehicles. When the requested

data is sent back, the data is available to use. If the local

memory of the vehicle is full, one or more data objects will

be evicted according to the data replacement algorithm. We



Figure 2. Simula tion Setup

implement Roadcast on the ns-2 simulator [11]. Since ns-2 is

developed for generic ad hoc networks, it does not support

VANET specific topologies and traffic control models. To

provide a real VANET environment, we use the GrooveNet

simulator [12] and a map of the Pittsburgh area (as obtained

by the US Census Bureau data for street-level maps [13]) to

generate the street topology (Figure 2) and vehicle mobility

trace file. The mobility trace is used in the ns-2 simulations.

There are totally 150 moving vehicles following the

street topology and the speed limits. 100 data objects, with

different data size (1, 3, or 5 units), are generated at the

start of each simulation. Each vehicle can store up to 20

data units in its local memory but initially it randomly picks

data objects as its local data until the local memory is full. To

describe the data content, the vocabulary dictionary consists

of 40 different terms, and each data can randomly choose

2∼8 terms as its keywords. Similarly, each query consists
of 3∼5 keywords from the same dictionary. The data access
follows Zipf distribution.

In Roadcast, the query requirement can be relaxed so that

the data object that does not match all query requirements

can still be used to serve the query. The default satisfaction

degree is set to 75%, which means if one query consists of 4
keywords, any data object that matches at least 3 of these 4

keywords can be used to serve the query. Most of the system

parameters and their default values are listed in Table 5.

Roadcast consists of two components: the popularity

aware content retrieval scheme and the popularity aware

data replacement algorithm. To evaluate the performance

of Roadcast, we compare it to three other content sharing

schemes. The first two schemes use the same data replace-

ment algorithm as Roadcast but different content retrieval

schemes. Scheme I requires the data must be 100%-matched,
while Scheme II relaxes the query requirement based on the

satisfaction degree but without taking the popularity factor

into consideration. Scheme III uses the same popularity

aware content retrieval scheme as Roadcast but its data

replacement is based on LRU (i.e., Least-Recently-Used).

Table 5. Simula tion Configura tions
Parameter Default Value

Simulation Time 20 minutes

Number of Vehicles 150

Simulation Area 3km×3km (Pittsburgh)

Communication Range 200m

Data Size 1 unit, 3 units, 5 units

Memory Size 20 units

Keyword Set Size 40

Number of Keywords in Data Description 2∼8

Number of keywords in Query Description 3∼5

Zipf Parameter θ 0.8

Satisfaction Degree 75%
Vehicle Speed Street speed limit ±25%
Mobility Model StreeSpeedModel [12]

Trip Model SightSeeingModel [12]

By comparing Roadcast to Scheme I and Scheme II, we can

see the advantage of the popularity aware content retrieval

scheme. Scheme III can be used to demonstrate the benefit of

the proposed data replacement algorithm. The performance

of these content sharing schemes are measured by the query

delay and the query hit ratio.

4.2. Query Delay

The query delay is defined as the average delay from ini-

tiating the query to receiving the satisfactory data. Figure 3

compares Roadcast and other three content sharing schemes

in terms of query delay. As shown in Figure 3(a), when the

memory size is small (e.g., 10 units), all schemes have a rel-

atively higher query delay. When the memory size increases

(e.g., to 30 units), the query delay decreases. This is because

as the memory size increases, vehicles are able to buffer

more data objects. Hence, there will be more data replicas

and the queries can be served by these replicas quickly. As

shown in Figure 3(a), Scheme I, which only accepts exactly

matched data, has a much longer query delay than other three

schemes (e.g., up to 175% of Scheme II, 190% of Scheme

III, and 282% of Roadcast). This confirms the fact that it

would take much longer time to find the exactly matched

content in an intermittently connected VANET. Roadcast has

the shortest query delay since it considers data popularity

in content delivery and data replacement. It allows a more

reasonable data distribution in the network, which further

improves the data access performance. From the figure, we

can see that Roadcast can save up to 32% and 38% query

time compared to Scheme II and Scheme III, which either

fails to consider popularity in content retrieval or ignores

the popularity factor in data replacement. From Figure 3(a),

we can also see that the query delay of Scheme II is much

shorter than that of Scheme III when the memory size is

small compared to when the memory size is large. This is

because when the memory size is small, the data replacement

algorithm is much important compared to that when the

memory size is large. Further, LRU (used in Scheme III)

does not consider the data size and its global popularity, but

the popularity aware data replacement algorithm (used in

Scheme II) achieves a better tradeoff between data size and
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Figure 3. Query Delay

popularity thus it can help obtain a better performance.

Figure 3(b) compares the query delay of different schemes

as a function of the content access skewness. In Zipf

distribution, when θ=0, the access pattern is uniformly

distributed, and different keywords have similar popularity.

As θ increases, the access pattern becomes more skewed.

As can be seen from the figure, when the content access is

close to uniform distribution, the popularity aware content

retrieval scheme and the data replacement algorithm do not

have much advantage. But Scheme II, III and Roadcast

still have much shorter query delay than Scheme I due to

their relaxation on the query requirement. As content access

becomes skewed, Roadcast consistently outperforms other

schemes. Here, the skewness of content access also helps

data allocation. As θ increases, the query delay decreases.

4.3. Query Hit Ratio

The query hit ratio is the possibility that the query can

be served locally. Figure 4 evaluates four schemes on the

query hit ratio as a function of memory size and data

skewness. Again, Roadcast has a much higher query hit

ratio than other three schemes, up to 190%, 61% and

53% higher than Scheme I, II, and III, respectively. This

advantage of Roadcast may be due to two reasons: (1) during

content retrieval, vehicles favor more popular data which

increases the number of copies of the popular data objects

in the network, and (2) when the memory is full, the data

object with the smallest cost value (i.e., Hi, defined by

Equation 4) will be evicted first, which considers both data

popularity and data size factors. Therefore, for the skewness

of content access, more query requests can be served locally

in Roadcast, increasing its query hit ratio. We also observe

that Scheme III outperforms Scheme II in query hit ratio.

This means that the popularity aware content retrieval has

more benefits on query hit ratio than data replacement in our

simulation. Similarly, from Figure 4(b) we can see that as

content access becomes skew, Roadcast outperforms other

schemes. All these advantages come from the combination

of popularity aware content retrieval and data replacement.

4.4. Satisfaction Degree in Roadcast

In Roadcast, an important factor is to relax the query

requirement so that users can have more choices to get
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satisfactory but not exactly matched content quickly. Figure

5 illustrates how the setting of satisfaction degree affects per-

formance. As the figure shows, when the satisfaction degree

decreases (i.e., the users will be easier to be satisfied), the

query delay drops and the query hit ratio increases quickly.

For example, when the satisfaction degree changes from

100%-match to 75%-match, the query delay can be reduced

by 47% and the query hit ratio can rise from 4.7% to 8.6%.

However, as the satisfaction degree decreases, the quality of

the retrieved content may be degraded. There is always a

tradeoff between the content quality and performance. The

satisfaction degree should not be too low in real applications.

4.5. Data Allocation

In Section 3, we prove that the popularity aware data

replacement algorithm can achieve the square-root data allo-

cation in the system steady state. Here, we use simulations

to verify it. Figure 6 plots the number of replications for

each data object in the system at the end of the simulation,

as a function of data access frequency. As we can see, for

those popular data objects with a high access frequency,

they have more data replications in the network than other

less accessed data. Also the number of replications for each

data closely follows the curve of a square-root function (the

red curve). Consequently, the simulation results confirm that

the popularity aware data replacement algorithm can help

achieve the optimal square-root data allocation.

5. Related Work
Vehicular Networks: Vehicular networks represent an

interesting application scenario not only for traffic safety and

efficiency but also for more commercial and entertainment

support [14], [15]. So far, however, most vehicular network
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researches focus on routing issues [1], [16], [17]. They all

assume the consumer is known beforehand so that the sender

can route the content to its destination. For example, VADD

[1] studies how to choose the best routing path based on the

traffic information. Further, Zhao at al. [4] introduce data

pouring and buffering techniques to disseminate data along

the road. This paper studies content sharing, where each

vehicle queries useful data from its encountered neighbors.

Different from destination aware routing and dissemination,

how to retrieve the most suitable data from neighboring

vehicles is the main focus of this paper.

Content Retrieval: In the last couple of years there has

been an increasing interest in content retrieval through inter-

mittent contact opportunities in vehicular networks. Guo et

al. [2] study content retrieval in a small area, where vehicles

in adjacent lanes exchange information as they pass through

one another. Zhang at al. [15] analyze the scheduling issues

of content retrieval at the road intersection. Our work,

however, investigates the problem on the perspective of the

whole network. Lee et al. [3] propose to accelerate content

retrieval using randomized network coding. However, the

network coding based data diffusion brings in large amount

of redundant data which may not be useful but taking much

communication bandwidth and memory space. In Roadcast,

content retrieval is based on user’s query request. We study

how to efficiently share content with future encountered

vehicles based on local information.

Data Replacement: Studies in data replacement start

from cache replacement. Cao and Irani [10] study several

replacement algorithms for web cache. They propose the

GreedyDual-Size algorithm that enables the cache replace-

ment to be sensitive to both the variability in data size and

the retrieval cost. Later, Jin et al. [18] improve GreedyDual-

Size by adding the popularity factor. However, all these

works are based on web cache which is in a centralized

environment. Roadcast differs from the existing works in

that it is a distributed replacement algorithm and it aims to

optimize the network-wide content sharing performance.

6. Conclusions
This paper raises a simple question: how can we help

a user get the useful data as quickly as possible through

vehicle-to-vehicle content sharing in an intermittently con-

nected VANET? To answer this question, we propose Road-

cast, a novel P2P content sharing scheme for VANETs.

Roadcast relaxes user’s query requirement a little bit so

that users can get the requested content quickly. Further-

more, Roadcast ensures more popular data is more likely

to be shared with other vehicles. Roadcast consists of two

components. First, the popularity aware content retrieval

scheme makes use of IR techniques to find the most relevant

data towards user’s query, but significantly different from

IR techniques by taking data popularity into consideration.

Second, the popularity aware data replacement algorithm is

proposed to achieve the optimal square-root data allocation

according to data popularity by only using local information.

Simulation results show that Roadcast can reduce the data

access delay and improve the query hit ratio while satisfying

the user requirement.
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