
Energy-Aware Advertising through Quality-Aware
Prefetching on Smartphones

Yi Yang, Yeli Geng and Guohong Cao
Department of Computer Science and Engineering

The Pennsylvania State University
Email: {yzy123, yzg5086, gcao}@cse.psu.edu

Abstract—In-app advertising provides a monetization solution
for free apps, but also consumes lots of energy due to the long
tail problem in cellular networks. To reduce the tail energy,
we can predict the number of ads needed in the future and
then prefetch those ads together instead of periodically. However,
prefetching unnecessary ads may waste both energy and cellular
bandwidth, and this problem becomes worse when the network
quality is poor. In this paper, we propose network quality
aware prefetching algorithms. First, we design a prediction
algorithm which generates a set of prefetching options with
various probabilities. Second, with these prefetching options,
we propose two prefetching algorithms to reduce the energy
consumption by considering the effect of network quality, where
the energy-aware prefetching algorithm aims to minimize the
energy consumption, and the energy-and-data aware prefetching
algorithm considers the data usage to achieve a tradeoff between
energy and data usage. Evaluation results show that, compared to
traditional ways of fetching ads periodically, our energy-aware
prefetching algorithm can save 80% of energy under various
network quality, and our energy-and-data aware prefetching
algorithm can achieve similar energy saving with less data usage.

I. INTRODUCTION

With the proliferation of smartphones, people spend a large
amount of time on mobile apps. There are two kinds of mobile
apps: free apps, and paid apps. According to recent studies,
free apps account for above 90% of the total amount of apps
downloaded in the market in 2015 [1], [2]. To pay for the cost
of the app development, free apps are usually associated with
in-app advertising [3].

Although users enjoy using free apps, the energy consump-
tion of fetching in-app ads through the cellular network may
lead to significant battery drain on smartphones. For example,
a recent measurement study based on top 15 ad-supported
windows phone apps shows that fetching in-app ads consumes
23% of the app’s total energy and 65% of the app’s total
communication energy [4].

In cellular networks, the release of radio resource is con-
trolled by multiple timers, and the timeout value can be more
than 10 seconds [5], [6], [7], [8]. Thus, it is possible that
the cellular interface continues to consume a large amount of
energy (also referred to as the long tail problem) before the
timer expires, even when there is no network traffic. Although
it only takes less than one second for the cellular interface to

This work was supported in part by the National Science Foundation (NSF)
under grants CNS-1421578 and CNS-1526425.

fetch an ad, due to the long tail problem, much more energy
may be wasted. This problem becomes worse since ads are
fetched periodically, and then the long tail problem occurs
frequently [9]. To reduce the energy related to the long tail
problem, techniques such as fast dormancy [10] have been
proposed. Fast dormancy can reduce the tail time by switching
the cellular interface into the low power state immediately
after the data transmission. However, this requires support
from both mobile devices and cellular carriers. Furthermore,
it may not know when the next data transmission will happen.
If the next data transmission happens quickly, fast dormancy
may waste energy and introduce extra delay on switching the
smartphone out of the low power state.

As another solution to address the long tail problem, we
can predict the number of ads needed in the future and then
prefetch those ads together. Then, only one tail is generated
instead of multiple tails with the traditional ways to fetch ads
periodically. Although prefetching multiple ads can reduce the
tail energy, its potential cost is also high. This is because
prediction may be inaccurate, and prefetching unnecessary ads
may waste both energy and cellular bandwidth. This problem
becomes worse when the network quality is poor and it will
take much longer time to transmit the same amount of data
and consume more energy. Thus, prefetching should also be
aware of the network condition.

Since it is hard to know the exact number of ads to prefetch,
which is app-dependent and user-dependent, we have to adjust
the number of ads to prefetch based on the network quality.
Generally speaking, more ads should be prefetched when the
network quality is good, and fewer ads should be prefetched
when the network quality is poor. Although redundant ads
may be prefetched under good network quality, it avoids
other possible long tail problems. Similarly, when the network
quality is poor, prefetching fewer ads can avoid the energy
waste of prefetching unneeded ads.

In this paper, we propose network quality aware prefetching
algorithms. Different from traditional data-mining based pre-
diction algorithms which only generate one option (i.e., the
number of ads to prefetch), the proposed prediction algorithm
generates a set of options with various probabilities. With these
prefetching options, we propose two prefetching algorithms
to reduce the energy consumption by considering the effect of
network quality, where the energy-aware prefetching algorithm
aims to minimize the energy consumption, and the energy-and-



data aware prefetching algorithm also considers the data usage
to achieve a tradeoff between energy and data usage.

The contributions of this paper include:
• We propose a prediction algorithm to generate a set of

prefetching options with various probabilities, so that
different options are adopted based on the network quality
to save energy.

• With multiple prefetching options, we propose two
prefetching algorithms: the energy-aware prefetching al-
gorithm aims to minimize the energy consumption, and
the energy-and-data aware prefetching algorithm achieves
a tradeoff between energy and data usage.

• We have implemented and evaluated the proposed
prefetching algorithms under different network quality.
Evaluation results show that, compared to traditional
ways of fetching ads periodically, our energy-aware
prefetching algorithm can save 80% of energy, and our
energy-and-data aware prefetching algorithm can achieve
a similar energy saving with less data usage.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents some preliminar-
ies. Section IV introduces network quality aware prefetching
algorithms. We evaluate the proposed algorithms in Section
V and test them in a real app in Section VI. Section VII
concludes the paper.

II. RELATED WORK

Recently, lots of research has been done on energy con-
sumption of fetching in-app ads. A detailed measurement
about the ad volume has shown that 50% of Android users
have spent more than 5% of their total network traffic related
to ad [11]. Although it seems not very large, fetching these ads
will generate periodical data transmissions, which contribute
to 30% of the total radio energy consumption due to the long
tail problem [9]. A case study in [12] has found that 70% of
the energy consumed in Angry Birds (a game app) on Android
devices is related to a third party ad library.

Prefetching has been adopted to solve the long tail problem
in cellular networks [13], [14]. Parate et al. [13] proposed to
predict what app will be used next, and then prefetch that app.
Although they solve the problem of determining what data
to prefetch, they do not consider the problem of how long
an app will be used and how much data (ads) to prefetch,
which is the focus of this paper. In [14], a system was built
to support informed prefetch in which developers can use an
API to provide a hint for prefetch. However, in practice it is
hard for developers to know how much data will be needed in
the future, which is user-dependent (e.g., how many ads are
needed depends on how long an app is used). Some prefetching
algorithms [15], [16] prefetch all the data when a fast network
connection (e.g., WiFi, LTE with good network quality) is
available. However, in reality it is hard to know if such a fast
network connection will be available before the data is needed
(e.g., An indoor area with poor network quality and no WiFi).
In our work, we do not have this assumption, and we try to

find the most energy efficient way for prefetching under the
current network quality.

Our work is mostly related to [4], [17] which attempt to
reduce the energy consumption of fetching in-app ads. The
CAMEO framework [17] provides a middleware to prefetch
context-dependant ads for all apps. It predicts what apps will
be used in the future to determine ad contexts and prefetches
a fixed number of ads for each app. However, the number of
ads to prefetch is app-dependent and user-dependent, which
is not fixed. Our work can be considered complimentary to
CAMEO, as our work focuses on predicting the number of ads
to prefetch for certain app and user under the current network
quality. Mohan et al. [4] proposed an overbooking model at the
ad server/network to ensure that all ads can be displayed before
deadline, and predicted how many ads to prefetch by using
the 80th percentile value of the number of ads displayed in
historical records. Different from using a simple rule to predict
the number of ads to prefetch, which may consume much more
energy under some network quality, our prefetching algorithms
determine the number of ads to prefetch by considering the
effect of network quality.

III. PRELIMINARIES

In this section, we first provide some background of how
in-app advertising works, and then present our design consid-
erations and basic ideas.

A. Background: In-app Advertising
We first briefly illustrate the current in-app ad ecosystem,

and then introduce the in-app ad format and size. At the end,
we discuss what ads to prefetch.

1) In-app Ad Ecosystem: Current in-app advertising
ecosystem involves three main parts: Apps, Ad Networks, and
Advertisers. Apps on the smartphones rely on the embedded
ad library, which is usually provided by the same company
who also provides the corresponding ad network, to fetch and
display ads. Advertisers can register with the ad network and
initiate ad campaigns. An ad campaign is a contract between
advertisers and the ad network (e.g., delivering 10,000 ads
within a day). The responsibility of the ad network is to
complete all the ad campaigns. Current ad networks usually
deploy real-time bidding (RTB) strategies [18] to display the
most valuable and relevant ads for mobile users. Although the
bidding price of an ad may change in a RTB-based system,
recent studies [4] have shown that the bidding price is stable
in a short period of time (e.g., several hours), which is longer
than most app running time.

2) In-app Ad Format and Size: In-app ad formats include
banners, rich media, and video. According to recent market
analysis and prediction [19], rich media is becoming the most
popular ad format. Thus, we consider to prefetch rich media
ads in this paper. When prefetching a rich media ad, the whole
file of the ad needs to be fetched to avoid extra network
activities, although some parts of the file are only useful after
certain user interactions. According to ad specifications [20],
[21], [22], [23], the whole file size of a rich media ad ranges
from 50 KB to 200 KB.



0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Number of ads displayed

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty
 (

%
)

50%

15

Fig. 1. Cumulative distribution of how many ads are displayed

3) What Ads to Prefetch: Ads to be displayed are deter-
mined by app-dependent contexts such as app category [17],
and then it is easier to decide what ads to prefetch for a specific
app. This will be much harder for all apps because different
apps may have different contexts and then different types of
ads should be prefetched. Thus, ads are only prefetched for
a certain app in this paper, and we know what app is under
consideration and what ads to prefetch. Specifically, ads are
prefetched when new ads are needed in the app, and unused
ads are discarded when the app is closed.

B. Design Considerations and Basic Ideas

The energy consumption of prefetching ads is affected
by the prediction accuracy. If the prefetched ads are more
than necessary, prefetching those unneeded ads may waste
a lot of energy. On the other hand, if the prefetched ads
are fewer than needed, more prefetches will be needed, and
resulting in extra long tail problems. In cellular networks, the
energy consumption of prefetching ads varies with the network
quality. For example, as we measured in a LTE network,
when the network quality is poor, downloading a 100 KB
ad consumes 2 joules. When the network quality is good,
downloading a 100 KB ad consumes 0.1 joules. The energy
consumption of a long tail remains about 10 joules under
different network quality.

Traditional data-mining based algorithms do not consider
the network quality, and only generate one option (i.e., the
number of ads to prefetch), which may be too high or too
low and then wasting some energy. To further reduce the
energy consumption, we have to consider the network quality
by designing adaptive algorithms which can adjust the number
of ads to prefetch accordingly. To achieve this, we generate
multiple options based on the historical app usages, and choose
the one with the least energy consumption according to the
current network quality.

For example, Fig. 1 shows the cumulative distribution of the
number of ads displayed for an app according to our trace. The
largest number of ads displayed is 60 and the median is 15.
We can prefetch 60 ads, or we can prefetch 15 ads with a
50% probability that 45 more ads are prefetched in the future.
Under poor network quality (i.e., downloading an ad consumes
2 joules), prefetching 60 ads consumes 2 × 60 + 10 = 130
joules. As the second option, we can prefetch 15 ads, and
then the expected energy consumption is 2×15+10+50%×
(2× 45+ 10) = 90 joules. In this case, prefetching fewer ads
(the second option) wins. Under good network quality (i.e.,
downloading an ad consumes 0.1 joules), prefetching 60 ads

consumes 0.1×60+10 = 16 joules. As the second option, we
can prefetch 15 ads, and then the expected energy consumption
is 0.1× 15 + 10 + 50%× (0.1× 45 + 10) = 18.75 joules. In
this case, prefetching more ads (the first option) wins.

The above example shows the basic idea of our net-
work quality aware prefetching algorithms. We first design
a prediction algorithm which generates multiple prefetching
options (i.e., the number of ads to prefetch) with detailed
information to estimate the probability of future prefetches.
Then, we estimate the energy consumption of each option by
considering the effect of network quality and choose the best
one accordingly.

IV. NETWORK QUALITY AWARE PREFETCHING

In this section, we first present the prediction algorithm
which can generate multiple prefetching options with various
probabilities, and then describe two prefetching algorithms
to determine the number of ads to prefetch according to the
network quality.

A. Prediction Based on a Series of Probabilities

Our prediction algorithm aims to generate multiple prefetch-
ing options of how many ads to prefetch. Specifically, our goal
is to generate a set of options in the form of (α, n), where α
is a predefined probability, and n is the predicted number of
ads corresponding to α such that the probability of displaying
more than n ads in an app is α. Since the number of ads can
be calculated by dividing the app duration, which is from the
app being opened to being closed, by the ad refresh interval,
which is fixed and easy to find, the goal becomes to predict
the app duration corresponding to α.

For a certain app, the prediction can be based on the
percentile app duration which can be obtained from the app
usage records. For example, the 20th percentile app duration
is the time value t below which 20% of the observed app
duration can be found. That is, the probability of using the app
longer than t is 80%, and the corresponding prefetching option
is (α = 80%, n = t

ad−refresh−interval ). Thus, to predict the
app duration for a certain value of α, we only need to calculate
the corresponding percentile app duration.

It may not be a good idea to consider all app usage records
for prediction, because some of them may be misleading
at the current time and location. For a certain app, a user
may use it in some specific context, which has different app
duration from other contexts. For example, a student may
read newspaper at school during class break or at home. Due
to the time limitation in the class break, the student may
spend much less time when reading newspaper at school than
at home. As a result, those app usage records generated at
school are not suitable for predicting the app duration at home,
and vise versa. Thus, to predict the app duration, we should
only consider those app usage records generated in a similar
context. Then, we need to identify the context of the app, and
partition app usage records based on the context.

It is very difficult to partition app usage based on context
due to two reasons. First, it is hard to know whether a user



TABLE I
MUTUAL INFORMATION BETWEEN APP DURATION AND FEATURES

total # of app usage records 170K
total # of apps 2K
H(app duration) 5.59 bits
I(app duration, time) 1.18 bits
I(app duration, location) 0.71 bits
I(app duration, app category) 0.13 bits
I(app duration, last app name) 0.08 bits
I(app duration, last app duration) 0.04 bits
I(app duration, recent call-SMS) 0.02 bits

runs an app in some specific context or just runs it randomly.
Second, even if such contexts exist, it is hard to identify them
because of the diversity of user behaviors. For example, a user
may run an app at particular locations, while uses another app
at particular time and locations. Thus, there is no simple rule
to identify these contexts.

To address this problem, we adopt the clustering technique,
which can group together app usage records in such a way
that app usage records in the same group (called a cluster)
have more similar features (e.g., time and location) than those
in other groups. If these app usage records are found tightly
grouped (clustered), it means that this app is used in specific
contexts, which can be represented by the centroid of clusters.
Then, we can classify the current app usage to a cluster, and
only use app usage records in that cluster for prediction.

1) Feature Selection: It is important to carefully select
features that affect the app duration. In information theory, for
a discrete random variable X , the entropy (H(X)) measures
the uncertainty of X . The mutual information between random
variable X and Y , denoted as I(X,Y ), represents the mutual
dependence between X and Y . A higher mutual information
between X and Y suggests that X and Y are more relevant
to each other. Thus, features that have the highest mutual
information with the app duration should be selected. In our
experiment based on the LiveLab dataset [24], we discretize
the app duration into 50 values, and calculate the mutual
information between it and different features. From the result
shown in Table I, time and location have the highest mutual
information with the app duration, so they are chosen for
clustering.

2) App Usage Record: An app usage record includes infor-
mation about app duration, time, and location. An interesting
observation from the LiveLab dataset is that most of the time
interval between two consecutive usages of the same app is
either very short (less than 5 minutes) or very long (more
than 100 minutes), as shown in Fig. 2, where the time interval
is counted as 100 minutes if it exceeds 100 minutes. By
analyzing user behaviors within those short time intervals, we
find that most app usages are interrupted because the user
needs to reply a message or quickly check some information
such as clock or weather. Thus, those app usages whose time
interval is less than 5 minutes are considered as one usage.
Based on this observation, we do not discard unused ads
immediately when the app is closed. Instead, five more minutes
are waited before discarding those ads. If the app is reused
within 5 minutes, it is considered as the same usage as the

0 50 100
0

2

4

6

8

10
x 10

4

Time interval (min)

N
u
m

b
e
r

(a) Distribution of time interval

0 5 10
0

1

2

3

4
x 10

4

Time interval (min)

N
u
m

b
e
r

(b) Distribution of time interval
less than 10 minutes

Fig. 2. Time interval between two consecutive usages of the same app

1 2 3 4 5
−0.5

0

0.5

1

1.5

2

Number of clusters k

G
a
p
 v

a
lu

e

(a) Gap statistic to determine the number of clusters

0 300 600 900 1200 1500 1800
0

50

100

150

App duration (sec)

N
u

m
b

e
r

0 300 600 900 1200 1500 1800
0

10

20

30

40

50

App duration (sec)

N
u

m
b

e
r

(b) App duration distributions in two clusters

Fig. 3. Partitioning app usage records into clusters by K-means

last one, and those ads can still be used for display.
As mentioned above, time and location are selected as

features for clustering. In an app usage record, time has
two different scales: hour of the day, and day of the week.
Location is represented by the cell id. Although cell id based
localization incurs errors as high as 500 meters, it is sufficient
to recognize coarse-grain locations like “home” or “office”.
Unlike GPS based localization, cell id based approach is more
energy efficient.

3) Partitioning App Usage Records into Clusters: In or-
der to group together app usage records, different kinds of
clustering algorithms can be applied. We choose the most
commonly used clustering algorithm, K-means, because of its
simplicity. K-means algorithm can partition app usage records
into k clusters in such a way that every app usage record is
partitioned into a cluster with the nearest mean to the centroid
of that cluster. k is assumed to be less than 5, otherwise the app
usage records in each cluster may be insufficient to calculate
the percentile app duration for prediction. To determine the
value of k, we use the gap statistic [25], which is one of
the best cluster validity methods for determining the number
of clusters for an unsupervised clustering algorithm like K-
means. For example, in Fig. 3a, the gap statistic shows a peak
at k = 2, which means that app usage records can be most
tightly grouped into two clusters. After partitioning app usage
records into two clusters (C1 and C2), we can see that there is
a notable difference between the distributions of app duration
in these two clusters, as shown in Fig. 3b. We update clusters
after every ten app usage records are added. As measured



Fig. 4. Naive Bayes classifier

TABLE II
CONFUSION MATRIX

C1 C2

C1 198 0
C2 0 100

on a Samsung Galaxy S6 phone, running clustering algorithm
on average takes 86 ms and consumes less than 0.1 joules,
which is negligible compared to the energy consumption of
downloading ads.

4) Classifying Current App Usage to a Cluster: We use the
naive Bayes classifier [26] to classify the current app usage to a
identified cluster, and then use app usage records in that cluster
for prediction. The structure of the naive Bayes classifier is
shown in Fig. 4. To evaluate its accuracy, we randomly select
some app usage records which have been assigned to a cluster,
and then test whether they can be classified to the right cluster.
The classification result is represented by a confusion matrix.
As an example shown in Table II, our classifier successfully
classifies app usage records in cluster C1 for 198 times and
those in cluster C2 for 100 times without any error. The
average accuracy of classification for all clusters is 99.8%.

5) Generating Prediction Results for a Cluster: After clas-
sifying the current app usage to a cluster, we use app usage
records in that cluster to predict the app duration. First, we
define a series of probabilities {αi}Mi=1, where 100% > α1 >
α2 > ... > αM = 0%. Then for each αi, the app duration
is predicted as the corresponding percentile app duration Ai
observed in that cluster such that the probability of running the
app for more than Ai seconds in the future is αi, where AM
is the longest app duration observed in that cluster. Finally, we
divide Ai by the ad refresh interval, which is a fixed value,
to obtain the number of ads ni to prefetch. The final set of
prefetching options is R = {(αi, ni) | i = 1, 2, ...,M}, where
nM is the largest number of ads displayed in history. In this
paper, we set M = 10 and αi = 90%, 80%, ..., 10%, 0% to
generate prefetching options.

B. Prefetching Algorithms

To reduce the energy consumption of prefetching, network
quality is taken into account to determine how many ads to
prefetch among options provided by R. In this section, we first
provide an overview of the energy model of the LTE network,
and then discuss how to define and obtain the network quality.
Finally, we give a detailed description of two prefetching
algorithms: the energy-aware prefetching algorithm, and the
energy-and-data aware prefetching algorithm.

1) Energy Model: In this paper, we use the energy model of
LTE to formulate the energy consumption of prefetching. Cur-
rently, LTE is the fastest wireless network widely deployed.
The power consumption of the LTE cellular interface can be
generalized into three states: promotion, data transmission,

0 5 10 15 20
0

500

1000

1500

2000

2500

Time (sec)

P
o
w

e
r 

(m
W

)

Data transmission

TailPromotion

Idle

Fig. 5. Power level of using the LTE cellular interface to download an ad

TABLE III
POWER CONSUMPTION OF LTE CELLULAR INTERFACE

State Power (mW) Duration (s)
Idle (GS6) 498± 35.4 -

LTE Promotion 1286.3± 36.5 0.5± 0.1
LTE Data 1959.2± 42.1 -
LTE Tail 1192.4± 31.4 11.5± 0.9

and tail, as shown in Fig. 5. The power consumption of these
three states are denoted as Ppro, Pcell, and Ptail, respectively.
The promotion time Tpro and the tail time Ttail are fixed. The
data transmission time depends on the size of the data and the
network condition when the data is requested. To prefetch n
ads, it takes time Tpref

Tpref (n) =
n× Sad

td
, (1)

where Sad is the ad size and td is the downlink throughput.
Putting them together, the total energy of prefetching n ads
through LTE can be formulated as

Epref (n) = Ppro × Tpro + Pcell × Tpref (n) + Ptail × Ttail. (2)

To determine the power consumption of the LTE cellular
interface, similar to previous work [27], we use the Monsoon
power monitor as the power supplier for our Samsung Galaxy
S6 phone (GS6) to measure the average instant power. The
results are summarized in Table III, where the power con-
sumption is measured when the screen is on.

2) Network Quality: The downlink throughput, td, is used
as the indicator of the network quality. However, the informa-
tion about the downlink throughput cannot be directly obtained
from the smartphone. There are two methods to estimate
the downlink throughput. The first method is based on the
signal strength information such as the signal-to-noise ratio
(SNR) or the signal-to-noise-plus-interference ratio (SNIR)
[16]. However, this method is inaccurate and only used by
simulators like ns3.

The second method is active probing which measures the
downlink throughput by downloading some data [28], [29].
Fig. 6 shows the measured LTE downlink throughput with
different amounts of data downloaded using a TCP connection.
As shown in the figure, a large amount of data (i.e., more
than 1 MB) is required to perform such measurement. This
is because the time to download a small amount of data may
depend on other factors rather than the downlink throughput,
such as the initial congestion window, the slow-start mecha-
nism of TCP, etc. Since the TCP slow-start only happens at
the beginning of the data transmission, an enhanced method



10 20 50 100 200 500 100020005000
0

1

2

3

4

5

6

7

8

Bytes downloaded (KB)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Fig. 6. Measuring LTE downlink throughput with different amounts of data.
1000 KB of data is required to accurately measure the downlink throughput
of 5.5 Mbps.

10 20 50 100 200 500 100020005000
0

1

2

3

4

5

6

7

8

Bytes downloaded (KB)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Fig. 7. Measuring LTE downlink throughput by using the second half of data.
200 KB of data is required to accurately measure the downlink throughput of
5.5 Mbps.

can divide the data in half and measure the throughput when
downloading the second half of data. As shown in Fig. 7,
by using the enhanced method, 200 KB data is enough to
accurately measure the throughput.

3) Energy-aware Prefetching Algorithm: With multiple
prefetching options provided by R and the current downlink
throughput, the energy-aware algorithm aims to minimize
the energy consumption of prefetching ads. To describe the
algorithm, we introduce two variables: α0 = 100%, n0 = 0,
which mean that more than 0 ads must be displayed for an
app usage.

There are three cases when running the algorithm. 1) It is the
first time to run the algorithm, and n0 ad has been displayed.
2) nj (1 ≤ j < M ) ads have been displayed but insufficient
(i.e., the prefetching option (αj , nj) has been chosen by the
last run of the algorithm). 3) The displayed ads are equal to or
more than nM , which is the largest number of ads displayed
in history.

The first two cases can be considered together. Given that
np (0 ≤ p < M ) ads have been displayed, the algorithm
calculates the per-ad energy consumption (Epper ad(i)) for each
prefetching option (αi, ni) such that i > p, and chooses the
one with the minimum Epper ad(i). To calculate Epper ad(i),
we first calculate the number of remaining ads, which is
(nM − np). Then, we estimate the total energy consumption
of prefetching the remaining ads, Eptotal(i). Finally, we have

Ep
per ad(i) =

Ep
total(i)

nM − np
. (3)

To calculate Eptotal(i), two parts of energy consumption
need to be considered. The first part is the energy consumption
of prefetching (ni − np) ads. This part of energy will be
consumed immediately after the prefetching option (αi, ni) is
chosen, and can be calculated by Epref (ni−np) according to
the current downlink throughput. The second part is the energy
consumption of prefetching additional ads in the future, if and

Algorithm 1: Energy aware prefetching algorithm
Input : R = {(αi, ni) | i = 1, 2, ...,M}, Number of ads already

displayed nd, α0 = 100%, n0 = 0

Output : Number of ads to prefetch npref

npref ← 10;
Emin ← +∞;
if nd ≥ nM then

return npref ;
else

find p s.t. np = nd;
end
for i← p+ 1 to M do

n← ni − np;
pro← αi/αp;
Ep

total(i)← Epref (n) + pro× Epref (nM − ni);
Ep

per ad(i)← Ep
total(i)/(nM − np);

if Ep
per ad(i) < Emin then
npref ← n;
Emin ← Ep

per ad(i);
end

end
return npref ;

only if more than ni ads are needed. This part of energy cannot
be accurately calculated, because future prefetching behaviors
are hard to predict.

To simplify the calculation, we assume that if more than ni
ads are needed, one additional prefetching is used for all the
remaining ads which is (nM − ni). Since users usually stay
still while using an app, the network quality should not change
too much. Thus, the energy consumption can be calculated by
Epref (nM − ni).

With the energy consumption for the current prefetching
and future prefetching, we have

Ep
total(i) = Epref (ni − np) + pro× Epref (nM − ni), (4)

where pro = αi/αp, which is the probability to display more
than ni ads after np ads already being displayed. If no ad has
been displayed before (i.e., p = 0), pro = αi.

In case three, since the displayed ads are equal to or more
than the largest number of ads displayed in history, we cannot
decide how many ads to prefetch based on the historical
app usages. Thus, we decide to prefetch a fixed number of
ads. A complete description of the energy-aware prefetching
algorithm is shown in Algorithm 1.

4) Energy-and-data Aware Prefetching Algorithm: Our
energy-and-data aware prefetching algorithm also considers
the effect of prefetching on the cellular data usage. In LTE,
energy efficiency is preferred over data saving since big data
plans are becoming more and more affordable. However, it is
still necessary to provide a tradeoff between energy and data
usage, because it is unreasonable to waste a large amount of
data usage in exchange for a small improvement of energy
efficiency.

The energy-and-data aware prefetching algorithm considers
both per-ad data usage and per-ad energy consumption. Given
that np (0 ≤ p < M ) ads have been displayed, for each
prefetching option (αi, ni) such that i > p, the per-ad data
usage, Spper ad(i), can be calculated as

Sp
per ad(i) =

(ni − np)× Sad

Np
e (i)

, (5)



Algorithm 2: Energy-and-data aware prefetching algo-
rithm

Input : R = {(αi, ni) | i = 1, 2, ...,M}, Number of ads already
displayed nd, α0 = 100%, n0 = 0, β

Output : Number of ads to prefetch npref

npref ← 10;
Cmin ← +∞;
if nd ≥ nM then

return npref ;
else

find p s.t. np = nd;
end
for i← p+ 1 to M do

n← ni − np;
pro← αi/αp;
Ep

total(i)← Epref (n) + pro× Epref (nM − ni);
Ep

per ad(i)← Ep
total(i)/(nM − np);

Np
e (i)← [

i∑
j=p+1

(nj − np)× (αj−1 − αj)]/(αp − αi);

Sp
per ad(i)← [(ni − np)× Sad]/N

p
e (i);

Cp
per ad(i)← Ep

per ad(i) + β × Sp
per ad(i);

if Cp
per ad(i) < Cmin then
npref ← n;
Cmin ← Cp

per ad(i);
end

end
return npref ;

where Np
e (i) = [

i∑
j=p+1

(nj −np)× (αj−1−αj)]/(αp−αi) is

the expected number of ads that can be displayed among the
prefetched (ni − np) ads. After obtaining Spper ad(i), the per-
ad cost, Cpper ad(i), can be calculated by adding Spper ad(i)
and Epper ad(i) together with a parameter β to perform the
tradeoff:

Cp
per ad(i) = Ep

per ad(i) + β × Sp
per ad(i). (6)

In the energy-and-data aware prefetching algorithm, the
prefetching option that yields the smallest value of Cpper ad(i)
is chosen. A complete description of the energy-and-data
aware prefetching algorithm is shown in Algorithm 2.

V. PERFORMANCE EVALUATION

In this section, we first introduce the app usage traces
and the network quality traces, and then use trace-driven
simulations to evaluate the performance of our prefetching
algorithms.

A. Evaluation Setup

In the evaluation, the ad refresh interval is set to two values:
30 seconds, which indicates an aggressive way to display
ads, and 60 seconds, which is usually recommended by ad
platforms like AdMob [22]. Three ad sizes are considered
based on the discussion in Section III-A2: 50 KB, 100 KB, and
200 KB. We also compare four algorithms: “Non-prefetch” is
the traditional way to periodically fetch ads, which is used as
benchmark. “80th Percentile” indicates a prefetching algorithm
that uses the 80th percentile value of the number of ads
displayed in historical records to determine how many ads to
prefetch, which is based on [4]. “Max” indicates a prefetching
algorithm that prefetches the largest number of ads displayed
in history. “Perfect” indicates a prefetching algorithm that can
prefetch the exact number of ads that will be used by the app.

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

10

Sample number

T
h
ro

u
g
h
p
u
t 

(M
b
p
s
)

measured throughput

 median throughput

(a) Trace 1

0 10 20 30 40
0

1

2

3

4

5

6

Sample number

T
h
ro

u
g
h
p
u
t 

(M
b
p
s
)

measured throughput

 median throughput

(b) Trace 2

Fig. 8. Measurement-based throughput traces. Throughput is randomly
collected when walking inside and outside the building.

Note that the perfect algorithm does not exist, and it only
provides a performance upper bound.

1) App Usage Trace: We use all 34 users and 20 apps
for each of them from the LiveLab dataset to generate app
usage traces. Each app usage trace contains the usage records
of a certain app generated by a user. To train our prediction
algorithm, each app usage trace is equally splitted into two
parts. Half of the trace is used as the training data and the
other part is used for evaluation.

2) Measuring Network Quality: We use our Samsung
Galaxy S6 phone to collect throughput traces through a LTE
network by downloading files from a mock server. Trace 1
in Fig. 8a is an outdoor trace with the downlink throughput
averaged at 5.5 Mbps. Trace 2 in Fig. 8b is an indoor trace with
downlink throughput averaged at 2.1 Mbps. The throughput of
those two traces is much lower than that measured by speed
test tools like Speedtest [30], which can reach 13 Mbps in
the outdoor environment. The reasons are as follows: First, in
our measurement, we use single HTTP connection over TCP,
the same way of fetching ads, to download files. The TCP
connection has been proven unable to fully utilize the LTE
bandwidth, because its congestion control cannot quickly adapt
to the network speed change. Second, speed test tools usually
optimize connection parameters and use multiple threads to
saturate the network connections. They also have a higher
throughput than average.

B. Evaluation Result (Measurement-based Network Quality)

Fig. 9 and Fig. 10 show the energy performance of different
prefetching algorithms on two measurement-based throughput
traces (i.e., Trace 1 and Trace 2). The energy consumption of
the non-prefetch algorithm is used as benchmark to calculate
the energy ratio of other algorithms. Based on the results,
we have three observations. First, all prefetching algorithms
save less energy when the ad size increases from 50 KB
to 200 KB or when the network quality is poor (i.e., trace
2). This is because prefetching algorithms usually download
more ads than needed. As the ad size increases or under
poor network quality, more energy is wasted on downloading
those unnecessary ads. Second, when the ad refresh interval
is shorter (i.e., 30 seconds), more ads are displayed and there
is more energy saving opportunity for prefetching. Third, our
prefetching algorithms are comparable to the perfect algorithm
on energy consumption, and outperform all other algorithms
under various scenarios.



E
n
e
rg

y
 r

a
ti
o
 (

%
)

0

20

40

60

80

80th Percentile Max

Energy

Energy&data

Perfe
ct

50 KB ad

100 KB ad

200 KB ad

(a) 30 seconds ad refresh interval
E

n
e
rg

y
 r

a
ti
o
 (

%
)

0

20

40

60

80

80th Percentile Max

Energy

Energy&data

Perfe
ct

50 KB ad

100 KB ad

200 KB ad

(b) 60 seconds ad refresh interval

Fig. 9. Energy ratio for measurement-based throughput (Trace 1)

E
n
e
rg

y
 r

a
ti
o
 (

%
)

0

50

100

150

80th Percentile Max

Energy

Energy&data

Perfe
ct

50 KB ad

100 KB ad

200 KB ad

(a) 30 seconds ad refresh interval

E
n
e
rg

y
 r

a
ti
o
 (

%
)

0

50

100

150

80th Percentile Max

Energy

Energy&data

Perfe
ct

50 KB ad

100 KB ad

200 KB ad

(b) 60 seconds ad refresh interval

Fig. 10. Energy ratio for measurement-based throughput (Trace 2)

To save energy, our algorithms can adjust the number
of ads to prefetch according to the energy consumption of
downloading an ad, which is influenced by the ad size and the
network quality. Fig. 11a plots the CDF of the number of ads
prefetched with different ad sizes according to our energy-
aware prefetching algorithm. As can be seen, fewer ads are
prefetched as the ad size increases from 50 KB to 200 KB.
This is because more energy may be wasted on prefetching
unneeded ads as the ad size becomes larger. Fig. 11b shows the
number of ads prefetched under different network quality. Un-
der good network quality (i.e., trace 1), prefetching unneeded
ads consumes less energy, so our algorithms save energy by
prefetching more ads to avoid other possible long tail prob-
lems. Since our prefetching algorithms can adaptively adjust
the number of ads to prefetch, they exhibit steady performance
on energy consumption under various scenarios. In contrast,
the 80th percentile algorithm and the max algorithm cannot
adjust the number of ads to prefetch according to the ad size
and the network quality. So they consume much more energy
under certain scenarios (e.g., 200 KB ad size, poor network
quality).

The average data usage of different prefetching algorithms
is shown in Fig. 12. The non-prefetch algorithm’s data usage
is used as benchmark to calculate the data ratio of other
algorithms. As can be seen, the perfect algorithm has the
least data usage because it only fetches the exact number of
ads. Comparing with the energy-aware prefetching algorithm,
whose data ratio is around 200%, the energy-and-data aware
prefetching algorithm has a lower data usage and reduces
its data ratio to around 170%. The data usage of the 80th
percentile algorithm is acceptable, while the max algorithm
uses an unaffordable amount of data which leads to a 1224%

Number of ads prefetched

0 20 40 60 80

F
(x

)

0

0.5

1

50 KB ad

100 KB ad

200 KB ad

(a) Fewer ads are prefetched as the ad
size increases from 50 KB to 200 KB.
(Trace 1)

Number of ads prefetched

0 20 40 60 80

F
(x

)

0

0.5

1

Trace 1 (5.5 Mbps)

Trace 2 (2.1 Mbps)

(b) More ads are prefetched when the
network quality is better. (100 KB ad)

Fig. 11. CDF plots of the number of ads prefetched according to the energy-
aware prefetching algorithm (30 seconds ad refresh interval)

D
a

ta
 r

a
ti
o

 (
%

)

0

500

1000

80th Percentile Max

Energy

Energy&data

Perfe
ct

249.0%

1224.3%

207.8%
174.5%

100.0%

Fig. 12. Average data ratio

data ratio.

VI. TESTBED DEVELOPMENT AND EVALUATION

To understand how much energy can be saved by our
prefetching algorithms in a real app, we have implemented
the proposed algorithms and measured their performance in a
book reader app on smartphones.

A. Testbed Development

We have developed three versions of a book reader app: ad-
enabled, ad-disabled, and no-ad. The ad-enabled app embeds
an ad client which can download ads from a mock server with
different prefetching algorithms. The ad-disabled app embeds
a tailored ad client which runs the prefetching algorithms
without downloading ads. The no-ad app has no ad client.
We distributed the app to seven students in our department,
and collected app usage traces for one month. For each trace,
half is used as the training data and the other half is used for
evaluation.

We replay the traces using different versions of the app on
a Samsung Galaxy S6 phone with 4G data plan, and use a
Monsoon Power Monitor to measure the power consumption.
The ad refresh interval is set to 60 seconds in our experiment.
For ad-enabled and ad-disabled apps, we run multiple tests
with different prefetching algorithms. Each test is repeated
five times, and the average energy consumption is reported.

B. Experimental Results

The energy consumption of the ad-enabled app includes
the energy consumed to prefetch ads (ad energy), the energy
consumption of the prefetching algorithms, and the app energy
(including CPU and display). The energy consumption of
the ad-disabled app includes the energy of the prefetching
algorithms and the app energy. The energy consumption of
the no-ad app includes only the app energy.



E
n

e
rg

y
 (

J
)

×10
4

0

1

2

3

Non-prefetch

80th Percentile Max

Energy

Energy&data

App

Ad

Algorithm

(a) 50 KB ad

E
n

e
rg

y
 (

J
)

×10
4

0

1

2

3

Non-prefetch

80th Percentile Max

Energy

Energy&data

App

Ad

Algorithm

(b) 100 KB ad

E
n

e
rg

y
 (

J
)

×10
4

0

1

2

3

Non-prefetch

80th Percentile Max

Energy

Energy&data

App

Ad

Algorithm

(c) 200 KB ad
Fig. 13. Energy consumption in an app

By considering them together, we can break down the
energy consumption of the ad-enabled app. As shown in Fig.
13, the energy consumption of our prefetching algorithms
is insignificant compared to the ad energy. The ad energy
of the non-prefetch algorithm (i.e., fetching ads periodically)
accounts for almost half of the total energy consumed by the
app. Compared to the non-prefetch algorithm, our prefetching
algorithms can save 70% to 80% of the ad energy and 30%
to 40% of the total energy with different ad sizes. Compared
to the 80th percentile algorithm and the max algorithm, our
prefetching algorithms can reduce the ad energy at least by
half. When the ad size is 200 KB, the ad energy of our
algorithms is one fourth of the ad energy of the max algorithm,
and two fifth of the ad energy of the 80th percentile algorithm.

VII. CONCLUSION

In this paper, we proposed network quality aware prefetch-
ing algorithms to reduce the energy consumption of fetching
in-app ads. First, in contrast to traditional data-mining based
prediction algorithms, which only generate one option, we de-
signed a prediction algorithm that generates a set of prefetch-
ing options with various probabilities. Second, with these
prefetching options, we estimated the energy consumption of
each option by considering the effect of network quality and
chose the best one accordingly. Two prefetching algorithms
were proposed: the energy-aware prefetching algorithm aims
to minimize the energy consumption, and the energy-and-data
aware prefetching algorithm also considers the data usage to
achieve a tradeoff between energy and data usage. Evaluation
results show that our prefetching algorithms can save 80% of
energy compared to traditional ways of fetching ads period-
ically, and outperform existing prefetching algorithms under
various network quality.

REFERENCES

[1] “The history of app pricing and why most apps are free,”
http://blog.flurry.com/bid/99013/The-History-of-App-Pricing-And-
Why-Most-Apps-Are-Free.

[2] “Download distribution of Android apps,”
http://www.appbrain.com/stats/android-app-downloads.

[3] S. Nath, “MAdScope: Characterizing Mobile In-App Targeted Ads,” in
ACM MobiSys, 2015.

[4] P. Mohan, S. Nath, and O. Riva, “Prefetching mobile ads: can advertising
systems afford it?,” in ACM EuroSys, 2013.

[5] B. Zhao, W. Hu, Q. Zheng, and G. Cao, “Energy-Aware Web Browsing on
Smartphones,” IEEE Trans. Para. Dist. Syst., vol. 26, no. 3, pp. 761-774,
2015.

[6] Y. Geng, W. Hu, Y. Yang, W. Gao, and G. Cao, “Energy-Efficient
Computation Offloading in Cellular Networks,” in IEEE ICNP, 2015.

[7] W. Hu and G. Cao, “Energy Optimization Through Traffic Aggregation
in Wireless Networks,” in IEEE INFOCOM, 2014.

[8] W. Hu and G. Cao, “Energy-Aware Video Streaming on Smartphones,”
in IEEE INFOCOM, 2015.

[9] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck, “Periodic transfers in mobile applications: network-wide
origin, impact, and optimization,” in ACM WWW, 2012.

[10] “Configuration of fast dormancy. rel. 8,” http://www.3gpp.org/.
[11] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Pa-

pagiannaki, H. Haddadi, and J. Crowcroft, “Breaking for commercials:
characterizing mobile advertising,” in ACM IMC, 2012.

[12] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with Eprof,” in
ACM EuroSys, 2012.

[13] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin, “Practical
prediction and prefetch for faster access to applications on mobile
phones,” in ACM UbiComp, 2013.

[14] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson,
“Informed mobile prefetching,” in ACM MobiSys, 2012.

[15] Y. Wang, X. Liu, D. Chu, and Y. Liu, “EarlyBird: Mobile Prefetching of
Social Network Feeds via Content Preference Mining and Usage Pattern
Analysis,” in ACM MobiHoc, 2015.

[16] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande, C.
Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: a practical
approach to energy-aware cellular data scheduling,” in ACM MobiCom,
2010.

[17] A. J. Khan, K. Jayarajah, D. Han, A. Misra, R. Balan, and S. Seshan,
“CAMEO: a middleware for mobile advertisement delivery,” in ACM
MobiSys, 2013.

[18] Y. Chen, P. Berkhin, B. Anderson, and N. Devanur, “Real-time bid-
ding algorithms for performance-based display ad allocation,” in ACM
SIGKDD, 2011.

[19] “Three trends in mobile advertising,” http://mobiledevmemo.com/three-
trends-in-mobile-advertising/.

[20] “Millennial media ad specs,” http://www.millennialmedia.com/ad-specs.
[21] “Yahoo ad specs,” https://adspecs.yahoo.com/adformats/mobile.
[22] “AdMob ad specs,” https://support.google.com/admob.
[23] “iAd ad specs,” https://developer.apple.com/news-publisher/iad/Creative-

Specifications.pdf.
[24] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “LiveLab:

measuring wireless networks and smartphone users in the field,” in ACM
HotMetrics, 2010.

[25] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society B, vol. 63, no. 2, pp. 411-423, 2001.

[26] R.E. Neapolitan, Learning Bayesian Networks, Prentice Hall, 2004.
[27] Y. Yang, Y. Geng, L. Qiu, W. Hu, and G. Cao, “Context-aware task

offloading for wearable devices,” in IEEE ICCCN, 2017.
[28] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O.

Spatscheck, “An in-depth study of LTE: effect of network protocol and
application behavior on performance,” in ACM SIGCOMM, 2013.

[29] W. Li, R.K.P. Mok, D. Wu, and R.K.C. Chang, “On the accuracy of
smartphone-based mobile network measurement,” in IEEE INFOCOM,
2015.

[30] “Ookla Speedtest,” http://www.speedtest.net/mobile/.


