
A Generalized Target-Driven Cache Replacement Policy for Mobile
Environments

�

Liangzhong Yin, Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University�
yin, gcao � @cse.psu.edu

Ying Cai
Department of Computer Science

University of Central Florida
cai@cs.ucf.edu

Abstract

Caching frequently accessed data items on the client side
is an effective technique to improve the system performance
in a mobile environment. Due to cache size limitations,
cache replacement algorithms are used to find a suitable
subset of items for eviction from the cache.

In this paper, we propose a generalized cost function
for cache replacement algorithms for mobile environment.
The distinctive feature of our cost function is that it is gen-
eral and it can be used for various performance metrics by
making the necessary changes. To demonstrate the prac-
tical effectiveness of the general cost function, we derive
two specific functions to be evaluated by setting two differ-
ent targets: minimizing the query delay and minimizing the
downlink traffic. Detailed experiments are carried out to
evaluate the proposed methodology. Compared to previous
schemes, our algorithm significantly improves the perfor-
mance in terms of query delay or in terms of bandwidth
utilization depending on the targets.

1 Introduction

Caching frequently accessed data items on the client side
is an effective technique to improve performance in a mo-
bile environment [3]. Due to the limitations of the cache
size, it is impossible to hold all the accessed data items in
the cache. As a result, cache replacement algorithms are
used to find a suitable subset of data items for eviction from
the cache.

Many cache replacement policies [4, 12, 14, 16] employ
a cost function of the different factors such as time since
last access, entry time of the data item in the cache, transfer
time cost, data item expiration time and so on. For exam-
ple, the algorithm [4] proposed by Bolot and Hoschka first

�
This work was supported in part by the National Science Foundation

CAREER Award CCR-0092770 and ITR-0219711.

explicitly considers the delay to fetch web documents in
cache replacement. Their cost function employs a weighted
function of the transfer time cost, the document size, and
the time since last access. However, the choice of the
cost function is not justified and there are many unspecified
weights. The Hybrid Algorithm (HYB) [14] addresses both
latency and bandwidth issues. The cost function employs
a weighted exponential function of the access frequency,
the size, the latency to the server and the bandwidth to the
server. Several constants are used, but exactly how to set
these constants to get better performance is not given. The
LNC-R-W3-U algorithm, proposed by Shim et al. [12],
aims to minimize the response time. Their cost function
employs a rational of the access frequency, the transfer
time, the document size, and the validation rate. The author
proved that their cache replacement algorithm could find the
document subsets that satisfy the cost function. However,
the author did not prove that this algorithm could minimize
the response time. The algorithms mentioned above are de-
signed for WWW environment where weak cache consis-
tency model is adopted. These algorithms may not be suit-
able if strong cache consistency model is needed. The Min-
SAUD algorithm [16] is designed for strong cache consis-
tency model. It uses an optimal cost function that can min-
imize the metric stretch1. Although the authors proved that
their cost function is optimal, they did not show how to get
such an optimal cost function.

These policies are valuable in that they address various
aspects of cache replacement. However, their choices of
cost functions are based on experience. These algorithms
are designed for a specific metric (target). When the target
changes, they have to come up with another function. In this
paper, we propose a different approach for cache replace-
ment. We first present a cache access cost model for mobile
environments. We then propose a generalized cost func-
tion based on this cost model, and prove that the proposed

1The ratio of the access latency of a request to its service time, where
the service time is defined as the ratio of the item size to the broadcast
bandwidth.

cost function can optimize the access cost in ideal situation.
Since our cost function is general, it can be used for vari-
ous kinds of performance metrics by making the necessary
changes. To demonstrate the practical effectiveness of the
general cost function, we derive two specific functions by
setting two different targets: minimize the query delay and
minimize the downlink traffic. Extensive simulations are
provided and used to justify the analysis. The simulation
results show that for both targets, our cache replacement
policy can significantly improve the performance compared
to the LRU algorithm and the LRU-MIN algorithm [1].

The rest of the paper is organized as follows. Section 2
presents the system model. In Section 3, we present the gen-
eralized cost function and the cache replacement algorithm.
The optimal proof is also provided. Some implementation
issues are discussed in Section 4. Section 5 evaluates the
performance of the proposed cache replacement algorithm
under two different targets. Section 6 concludes the paper.

2 The System Model

2.1 Mobile Computing Model

In a mobile computing system, the geographical area is
divided into small regions, called cells. Each cell has a base
station (BS) and a number of mobile terminals (MTs). Inter-
cell and intra-cell communications are managed by the BSs.
The MTs communicate with the BS by wireless links. An
MT can move within a cell or between cells while retaining
its network connection. An MT can either connect to a BS
through a wireless communication channel or disconnect
from the BS by operating in the doze (power save) mode.

The mobile computing platform can be effectively de-
scribed under the client/server paradigm. A data item is
the basic unit for update and query. MTs only issue simple
requests to read the most recent copy of a data item. There
may be one or more processes running on an MT. These pro-
cesses are referred to as clients (we use the terms MT and
client interchangeably). In order to serve a request sent from
a client, the BS needs to communicate with the database
server to retrieve the data items. Since the communication
between the BS and the database server is through wired
links and is transparent to the clients (i.e., from the client
point of view, the BS is the same as the database server), we
use the terms BS and server interchangeably.

2.2 The Cache Invalidation Model

Frequently accessed data items are cached on the client
side. To ensure cache consistency, a cache management al-
gorithm is necessary. Classical cache invalidation strategies
may not be suitable for mobile environments due to fre-
quent disconnections and high mobility of mobile clients.
It is difficult for the server to send invalidation messages

directly to the clients because they often disconnect to con-
serve battery power and are frequently on the move. For
the clients, querying data servers through wireless links for
cache invalidation is much slower than wired links because
of the latency of the wireless links. As a solution, we use
the IR-based cache invalidation approach [3] to maintain
cache consistency. In this approach, the server periodically
broadcasts an Invalidation Report (IR) in which the changed
data items are indicated. Rather than querying the server di-
rectly regarding the validation of cached copies, the client
can listen to these IRs over wireless channels and use the
information to invalidate its local cache. More formally, the
server broadcasts an IR every � seconds. The IR consists
of the current timestamp ��� and a list of tuples �����
	����� such
that �������������� � ��� , where ��� is the data item ��� , ��� is the
most recent update timestamp of � � , and � is the invalida-
tion broadcast window size. In other words, IR contains the
update history of the past � broadcast intervals. However,
any client who has been disconnected longer than � IR in-
tervals cannot use the report, and it has to discard all cached
items even though some of them may still be valid. Many
solutions [10, 11, 15] are proposed to address the long dis-
connection problem, and Hu et al. [10] has a good survey
of these schemes.

In the IR-based cache invalidation model, every client,
if active, listens to the IRs and invalidates its cache accord-
ingly. To answer a query, the client listens to the next IR
and uses it to decide whether its cache is valid or not. If
there is a valid cached copy of the requested data item, the
client returns the item immediately. Otherwise, it sends a
query request to the server through the uplink. Hence, the
average latency of answering a query is the sum of the ac-
tual query processing time and half of the IR interval. If the
IR interval is long, the delay may not be able to satisfy the
requirements of many clients. In order to reduce the query
latency, Cao [7] proposed to replicate the IRs � times; that
is, the IR is repeated every � �! �"$# of the IR interval. To re-
duce the packet size, the invalidation report replica, which
is called UIR, only contains the invalidation information
since last IR report. A client only needs to wait at most
� �! �%"$# of the IR interval before answering a query. Hence,
latency can be reduced to � �! �"$# of the latency in the pre-
vious schemes (when query processing time is not consid-
ered). In this paper, we will apply the UIR-based approach
to reduce the query delay of the IR-based cache invalidation
model. Although our algorithm is based on this cache inval-
idation model, it can also work under other models, such as
proposed in[3, 10, 11], with no or trivial changes.

We have standard assumptions of the Poisson arrivals of
data accesses/updates and the independent reference model.
The Poisson arrivals are usually used to model data access
and update processes. The independent reference model has
been adopted by many researchers [5, 16] and it explains the

access behavior well [5].

3 A Generalized Target-Driven Cache Re-
placement Algorithm

To facilitate our discussion, the following notations are
used. Figure 1 further explains the use of these notations.

��� : the number of data items in the database.
��� � : the cost of fetching data item � to the cache.
��� : the mean cost of validating the consistency of data

item in cache.
��� � : the cost of getting updated data item � from the

server.
��� � : the mean access rate to data item � .
��	 � : the mean update rate of data item � .
��
 � : the size of data item � .
������ : the probability of referencing data item � .
������� : the probability of invalidating cached data item � .
��� : the set of all the cached data items.

v

f

 ui

 ui

Access data

N

P

P

Y

Y
c

Consistent?

N

Get updated data

Fetch data

 i

i

ai

(1- P)

Return data

Data in cache ?

Figure 1. The cache access cost model

Based on the above notations, the cache replacement policy
should optimize the following expression

� �����
�����

����
 � ����

��� �"!#� �$��
 � �$��&% � � � � � ��� � � � � �'� � � (1)

This cost function can be explained by the cache access cost
model shown in Figure 1. If data item � is not in the cache,

it will take � � to fetch data item � into the cache. In other
words, if � is in the cache, we can save the access cost by� � . However, it also takes � �)(*�+���,� � � to validate it and
get the updated data if necessary. Thus, caching the data
can save the cost by � � � � � � ����,� � � per access. Since
the access possibility is �-�.� , we can conclude that the value���� � � � � � � ����,� � � reflects the value of caching data item
� .

Based on this cost function, we can build our cache re-
placement policy /)� � �"! �10 243 � . Let � denote the set of
all the cached data items. Suppose we need to replace data
items of size
 in order to add a new data item to the cache,
our policy finds the victim items set �65 that satisfies the
following two conditions:

� � � �
�7���+8

 �-9

�;: �=< �?> � �?>A@B�DC �
�����"E

 �+9
 � 	 �
�7���"E

����
 � ���� 9 �
����� 8

����
 � ����
(2)

Intuitively � 5 is the least costly subset of � whose total
size is at least
 .
Theorem 1 The General Opt algorithm replaces the set of
items that minimize the total access cost.

Proof. Suppose F is the set that /)� � �"! �10 243 � algorithm
finds. G is an arbitrary set whose total size H �7�JI
 �K9
 .
Suppose FML�GN%PO , otherwise we can remove the inter-
secting elements since their costs are equal under two algo-
rithms. According to the algorithm

�
�7�JQ

����
 � ����4R �
S �JI

����
 � �UT��

Let VW% � �XF �XG . Let � denote the data item to be
brought into the cache. Let V ��
 � �;V � and V ��
 � ����� denote
the cost of accessing V and � respectively.

After replacing F from the cache, the cost of accessing
F (not in cache) is �

���JQ
� � �Y� �

and the cost of accessing G (still in cache) is

�
S �JI

� �[Z � �\(�� �"Z � S �

Thus the total access cost after replacing F is

� Q % �
���JQ

�+�.�Y� � (�
S �JI

�+� Z � �#()�� Z � S � (V ��
 � �;V � (V ��
 � �����

Similarly the total access cost after replacing G is

� I % �
���JI

����Y� � (�S �JQ
�+� Z � �#()�� Z � S � (V ��
 � �;V � (V ��
 � �����

So,

� Q � � I % � �
�7�JQ

� � �Y� � (�
S �JI

� �[Z � �&(�� �"Z � S ���

� � �
�7�JI

�+�.�Y� � (�
S �JQ

�+� Z � �&(���� Z � S ���

% � �
�7�JQ

�+�.�Y� � � �
S �JQ

�� Z � �&(���� Z � S ���

� � �
�7�JI

� � �Y� � � �
S �JI

� �[Z � �&(�� �"Z � S ���

% �
�7�JQ

����
 � ���� � �
S �JI

����
 � � T��
R �

Thus, the /)� � � ! �10 243 � algorithm replaces a set that
minimize the total access cost.

Based on the generalized cost function, we can derive
specific cost function for a specific metric. For example,
suppose we want to minimize the query delay, � � will be the
delay to fetch item � after the query is generated; � is the
delay to validate the cached item; � � is the delay to get the
updated item � from the server after cache validation. We
have also derived other specific cost functions and we will
evaluate their performances in Section 5.

4 Implementation Issues

In the /)� � �"! ��0 243 � algorithm, the optimization prob-
lem defined by Equation 2 is essentially the 0/1 knapsack
problem, which is known to be NP-hard. Although there
is no optimal solution to the problem, when the data sizes
are relatively small compared to the cache size [12], a well-
known heuristic can obtain the sub-optimal solution, and we
adopt this heuristic; that is, throw out the cached data item
� with the minimum ����� "

� �	�
�
� value until the free cache space

is sufficient to accommodate the incoming data item.

4.1 Parameter Estimation

In the actual implementation, � �	 � ��	 � � � , and � � � are
usually not constant. We have to estimate these parameters
accurately to capture the temporal locality of data access. In
the following, we provide techniques to estimate the value
of these parameters.

We adopt the exponential aging method, which is
adopted in TCP ([13]) to estimate the round-time delay, to
estimate � � and � � . It combines both the history data and the
current observed value to estimate the parameters. When-
ever an access or validation is completed, � � and � � are re-
calculated as following:

� � %�
 � ������� (��� ��
 � � � � ����
� ��%�
 � �������� (��� ��
 � � � � �	��

� � � and � � � can be derived from � � and 	 � . Since � � � is
proportional to � � , � � � can be replaced by � � directly. Let
� �.� be the time of access and � �"� be the time of invalida-
tion. Since we assume the Poisson arrivals of data accesses
and updates, the possibility that cache invalidation happens
before next access is [16]:

� � � % � ! ��� � ��� � � � �&% 	 �� � (�	 �
So, the cost function in Equation 1 can be replaced by

the following cost function2:

����
 � ����&% � � � � ��� � � 	 �� � (�
� ��� (3)

We cannot simply use the above aging technique to es-
timate � � and 	 � since the access rate and the update rate
should still be “aged” in the absence of access to a data item.
We apply similar techniques used by Shim et al. [12] to es-
timate � � and 	 � . This method uses � most recent samples
to estimate � � and 	 � as follows.

� �% �
� � � �.� ��� �

	 � % �
� � � � � ��� �

where � is the current time, � � � ��� � and � � � ��� � are the
time of the � "$# most recent access and update. If less than
K samples are available, all the available samples are used.
It is shown by Shim et al. [12] that K can be as small as
2 or 3 to achieve the best performance. Thus the spatial
overhead to store recent access and update time is relatively
small.

4.2 Cache Insertion and Removal

A priority queue is needed so that the data item with the
least �$��
 � �$����
 � value can be quickly found and removed.
We implement the priority queue based on a heap. With the
help of the heap, remove and insert operations can be per-
formed in 2 � 0;� ��! � time, where ! is the total number of
cached items. Due to data item access and parameter re-
evaluation, the key value of the item within the heap maybe
changed, and then its position should also be changed to

2This cost function is a generalized version of the cost function pro-
posed in [16], which is proven to be able to optimize the metric stretch.
We can derive virtually the same cost function proposed in [16] by assign-
ing the specific cost values to the parameters in our cost function.

reflect its current value. A pointer is used to record its posi-
tion in the heap. In case of a value change, the item can be
found through this pointer in 2 ����� time and 2 � 07� � ! � time
is needed to adjust its position.

5 Performance Evaluation

In this section, we evaluate the performance of the pro-
posed methodology. To compare with other algorithms, we
use two specific targets and apply them to our general func-
tion. The first target is to minimize the query delay. The
second target is to minimize the downlink traffic.

5.1 The Simulation Model

In the simulation, we model a single server that main-
tains a collection of � data items. A number of clients ac-
cess these data items. The UIR cache invalidation model is
applied for wireless data dissemination.

5.1.1 The Client Model
The client query model is similar to what have been used in
our previous studies [7, 6, 17]. Each client generates a sin-
gle stream of read-only queries. The mean query generate
time for each client is � � � ����� . The access pattern follows� � 3?� distribution [18] with parameter � . In our simulation,
data items with smaller id will have higher access rate.

Similar to [2], we partition the data items into disjoint
regions of ��� � � ���
	 ����� items each. The access possibility
of any item within a region follows uniform distribution.
The Zipf distribution is applied to these regions.

5.1.2 The Server Model
The server broadcasts cache invalidation information (IR
and UIR) periodically. If the server receives requests from
clients, it will serve the requests during the next IR inter-
val on an FCFS (first-come-first-service) basis. There are
totally � data items at the server side. The data size varies
from
 ! � � to
 ! � � , and has the following two types of dis-
tributions.

� Random: The distribution of data size falls randomly
between
 ! � � and
 ! � � .

� Increase: The size (
 �) of the data item (�) grows
linearly as � increases; i.e.
 � %
 ! � � (��� � ��� �
���
�������

���
� � � .

The combination of size distribution and Zipf access pat-
tern defines the joint distribution of access frequency and
item size. The choices of the size distributions are based on
previously published trace analyses. Some analyses [8, 9]
show that small data items are accessed more frequently
than large items; while a recent web trace analysis [5] shows

that the correlation between data item size and access fre-
quency is weak and can be ignored.

The server generates a single stream of updates sepa-
rated by an exponentially distributed update inter-arrival
time with mean value of � ��� � � " � . The data items in the
database are divided into hot data subset and cold data sub-
set. Within the same subset, the update is uniformly dis-
tributed, where � ��� of the updates are applied to the hot
data subset. In the experiment, we assume that the server
processing time is negligible, and the broadcast bandwidth
is fully utilized for broadcasting IR and UIR, and serving
clients’ data requests. Most of the system parameters are
listed in Table 1. The second column lists the default val-
ues of these parameters. In the simulation, we may change
the parameters to study the impact of these parameters. The
ranges of these parameters are listed in the third column.

Parameter Default value Range

Database size (�) 3000 items
RegionSize 50 items
Number of clients 100
 ! � � 0.5 KB
 ! � � 20 KB
Mean update time
� ��� � � " �

100 seconds

Hot update prob. 0.8
Hot subset percentage 0.2
Broadcast interval (�) 20 seconds
Broadcast window (�) 10 interval
Broadcast bandwidth 144 kb/s
Relative cache size � ��� of total

database size
� � to� ���

Mean query generate
time � � � �����

100 seconds

Zipf distribution parame-
ter �

0.9 0 to 1

Table 1. Simulation parameters and their de-
fault values

Since the client caches are only partially full at the initial
stage, the effectiveness of the different algorithms may not
be truly reflected. In order to get a better understanding
of the true performance for each algorithm, we collect the
result data only after the system becomes stable, which is
defined as the time when the client caches are full.

5.2 The Evaluated Algorithms

Four cache replacement algorithms are compared in our
simulations.
� LRU: Keep removing the item that was used the least

recently until there is enough space in the cache.

3

4

5

6

7

8

9

10

11

12

13

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Cache size (% of total database size)

LRU
LRU-MIN

OPT
OPT (IDL)

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Cache size (% of total database size)

LRU
LRU-MIN

OPT
OPT (IDL)

(a) Increase (b) Random

Figure 2. The average query delay as a function of the cache size

� LRU-MIN [1]: Suppose the incoming data size is 	
and there is not enough space in the cache. The algo-
rithm finds the list of items in the cache with size at
least S and remove the least recently used items from
the list. If the list is empty, the algorithm finds the
list of items with size at least 	 ��� and keep removing
items in the list according to the LRU order. Similarly,
if more space are needed, try the items of size at least	 ��� .

� OPT: This is our algorithm. It keeps removing the
item with least ����
 � ������
 � value where the cost func-
tion is defined by Equation 3.

� OPT (IDL): We also simulate an ideal case, where the
access rate and the update rate are known as a prior.
This defines an upper bound for our algorithm.

5.3 Simulation Results: Minimizing the Query
Delay

Suppose our target is to minimize the query delay. Then
as shown in Section 3, in Equation 3, � � will be the delay
to fetch item � after the query is generated; � is the delay to
validate the cached item; � � is the delay to get the updated
item � from the server after cache validation.

5.3.1 The Average Delay under Different Cache Size
Figure 2 shows the average query delay as a function of the
cache size. The total database size is fixed. We change the
relative cache size from � � of total database size to

��� �
of

total database size to study the effect of cache size on the
average delay.

The “Increase” distribution favors small data items. A
large number of data items can still be saved in the cache
even when the cache size is small. As a result, the cache

hit-ratio is higher and the query delay is lower. This can
be verified by Figure 2, where the query delay under “In-
crease” size pattern is smaller than that under “Random”
pattern.

Generally speaking, the average query delay drops as the
cache size increases. However, our algorithms always out-
perform LRU and LRU-MIN. For the “Random” size distri-
bution (Figure 2 (b)), OPT (IDL) can outperform LRU by
� � � when the relative cache size is � � � and ��� � when the
relative cache size is � � � . Although OPT is not as good
as OPT (IDL), its average query delay is still � � � less than
that of LRU algorithm and ��� � less than that of LRU-MIN
algorithm when the relative cache size is � ��� .

For the “Increase” size distribution, there are correlation
between access rate and data size. So those algorithms that
consider data size will have better performance than those
that do not. For example, in Figure 2 (a), the difference
between LRU algorithm and other algorithms is much larger
than that in Figure 2 (b).

5.3.2 The Average Delay under Different Access Pat-
tern (�)

The Zipf parameter � determines the “skewness” of the ac-
cess distribution. Figure 3 shows the effect of the access
pattern on the system performance. When �D% �

, the “Ran-
dom” and “Increase” distribution almost generate the same
result. This is because the access is uniform and there is
no favor on the size of data items. As � grows, the aver-
age delay of the “Increase” distribution drops faster than
the “Random” distribution since more items can be cached
in the “Increase” distribution.

As shown in Figure 3, OPT and OPT (IDL) constantly
outperform LRU and LRU-MIN. In Figure 3 (a), on aver-
age, OPT outperforms LRU by ��� � and outperforms LRU-
MIN by � � � . In Figure 3 (b), on average, OPT outperforms

4

5

6

7

8

9

10

11

12

13

14

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Zipf parameter theta

LRU
LRU-MIN

OPT
OPT (IDL)

7

8

9

10

11

12

13

14

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay
 (

se
co

nd
s)

Zipf parameter theta

LRU
LRU-MIN

OPT
OPT (IDL)

(a) Increase (b) Random

Figure 3. The average query delay as a function of Zipf parameter �

LRU by � � � and outperforms LRU-MIN by � � � .

5.4 Simulation Results: Minimizing the Down-
link Traffic

The downlink bandwidth determines the amount of data
the server can broadcast in one IR interval. If we reduce
the downlink traffic, the server can handle more requests,
and hence, the server can serve more clients or clients can
make more requests. In order to minimize the downlink
traffic, we change the general cost function to meet this spe-
cific requirement. As a result, � � will be all the downlink
bandwidth needed to fetch item � to cache, � is the down-
link bandwidth needed for cache invalidation, and � � is the
downlink bandwidth needed to download the data.

Similar to Section 5.3, we compare the performances of
four algorithms, LRU, LRU-MIN, OPT and OPT (IDL).
Due to space limitation, we only show the results of the
“Random” distribution due to the similarity between the
“Random” distribution and the “Increase” distribution. The
performance is measured by the average downlink traffic,
which is the overall downlink traffic divided by the number
of queries.

5.4.1 The Average Downlink Traffic Under Different
Cache Sizes

Figure 4 shows that our algorithm always outperforms other
algorithms. The OPT (IDL) outperforms LRU or LRU-MIN
by more than � � �

on average. The OPT is not as good at
OPT (IDL), but it still outperforms LRU or LRU-MIN by
more than � � � on average.

5.4.2 The Average Downlink Traffic under Different
Access Pattern (�)

Figure 5 shows the impact of access pattern on the average
downlink traffic. When � is small, the access is uniformed

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 d
ow

nl
in

k
tr

af
fi

c
(b

yt
es

)

Cache size (% of total database size)

LRU
LRU-MIN

OPT
OPT (IDL)

Figure 4. The average downlink traffic as a
function of the cache size

distributed. The performances of four algorithms are similar
because the cache hit-ratio is very low and there is less room
for performance improvement. When � increases, more ac-
cesses are focused on few items. As a result, it became
important to cache the right data items and hence the perfor-
mance difference between four algorithms increases. When
� % � , compared to LRU (which now performs better than
LRU-MIN), OPT can reduce downlink traffic by about 1.5K
per query (� � �) and OPT (IDL) can reduce about 1.9K per
query (��� �).

6 Conclusions

In this paper, we propose a generalized cost function
for cache replacement algorithms in mobile environments.
Based on this generalized cost function, we derive two cost
functions to satisfy two specific targets: minimize the query

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
ow

nl
in

k
tr

af
fi

c
(b

yt
es

)

Zipf parameter theta

LRU
LRU-MIN

OPT
OPT (IDL)

Figure 5. The average downlink traffic as a
function of �

delay and minimize the downlink traffic. Detailed experi-
ments are carried out to evaluate the effectiveness of these
cost functions. In both simulations, our cache replacement
policy can significantly improve the performance compared
to the LRU algorithm and the LRU-MIN algorithm.

References

[1] M. Abrams, C. Standridge, G. Abdulla, S. Williams,
and E. Fox, “Caching Proxies: Limitations and Po-
tential,” Fourth International World-Wide Web Conf.,
Dec. 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik, “Prefetching
from a Broadcast Disk,” IEEE, pp. 267–285, 1996.

[3] D. Barbara and T. Imielinski, “Sleepers and Worka-
holics: Caching Strategies for Mobile Environments,”
ACM SIGMOD, pp. 1–12, 1994.

[4] J. Bolot and P. Hoschka, “Performance Engineering
of the World Wide Web: Application to Dimensioning
and Cache Design,” Fifth International World-Wide
Web Conf., 1996.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web Caching and Zipf-like Distributions: Evidence
and Implications,” Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications So-
cieties, 1999.

[6] G. Cao, “Proactive Power-Aware Cache Management
for Mobile Computing Systems,” IEEE Transactions
on Computer, June 2002.

[7] G. Cao, “A Scalable Low-Latency Cache Invalidation
Strategy for Mobile Environments,” IEEE Transac-
tions on Knowledge and Data Engineering, to appear
(a preliminary version appeared in MOBICOM00).

[8] C. Cunha, A. Bestavros, and M. Crovella, “Character-
istics of WWW client-based traces,” Technical Report
TR-95-010, Boston University, June 1995.

[9] S. Glassman, “A Caching Relay for the World Wide
Web,” Computer Networks and ISDN Systems, vol.
27, 1994.

[10] Q. Hu and D. Lee, “Cache Algorithms based on Adap-
tive Invalidation Report for Mobile Environments,”
Cluster Computing, pp. 39–48, Feb. 1998.

[11] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-
Sequences: An adaptive Cache Invalidation Method
in Mobile Client/Server Environments,” Mobile Net-
works and Applications, pp. 117–129, 1997.

[12] J. Shim, P. Scheuermann, and R. Vingralek, “Proxy
Cache Algorithms: Design, Implementation, and Per-
formance,” IEEE Transactions on Knowledge and
Data Engineering, vol. 11, July/August 1999.

[13] W.R. Steven, “TCP/IP illustrated,” Addison-Wesley,
vol. 3, 1996.

[14] R. Wooster and M. Abrams, “Proxy Caching that Es-
timates Page Load delays,” Proc. Sixth International
World-Wide Web Conf., 1997.

[15] K. Wu, P. Yu, and M. Chen, “Energy-efficient caching
for wireless mobile computing,” The 20th Intl. Conf.
on Data Engineering, pp. 336–345, Feb. 1996.

[16] J. Xu, Q. Hu, W. Lee, D. Lee, “Performance Eval-
uation of an Optimal Cache Replacement Policy for
Wireless Data Dissemination under Cache Consis-
tency,” 2001 Int’l conference on parallel processing,
Sept. 2001.

[17] L. Yin, G. Cao, C. Das, and A. Ashraf, “Power-Aware
Prefetch in Mobile Environments,” IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), 2002.

[18] G. Zipf, “Human Behavior and the Principle of Least
Effort,” Addison-Wesley, 1949.

