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ABSTRACT
Barrier coverage has attracted much attention in the past
few years. However, most of the previous works focused
on traditional scalar sensors. We propose to study barrier
coverage in camera sensor networks. One fundamental dif-
ference between camera and scalar sensor is that cameras
from different positions can form quite different views of the
object. As a result, simply combining the sensing range of
the cameras across the field does not necessarily form an ef-
fective camera barrier since the face image (or the interested
aspect) of the object may be missed. To address this prob-
lem, we use the angle between the object’s facing direction
and the camera’s viewing direction to measure the quality
of sensing. An object is full-view covered if there is always
a camera to cover it no matter which direction it faces and
the camera’s viewing direction is sufficiently close to the ob-
ject’s facing direction. We study the problem of construct-
ing a camera barrier, which is essentially a connected zone
across the monitored field such that every point within this
zone is full-view covered. We propose a novel method to
select camera sensors from an arbitrary deployment to form
a camera barrier, and present redundancy reduction tech-
niques to effectively reduce the number of cameras used.
We also present techniques to deploy cameras for barrier
coverage in a deterministic environment, and analyze and
optimize the number of cameras required for this specific
deployment under various parameters.
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Figure 1: (a) U is an object; dotted line is the sensing

range of Si and U⃗Si is the viewing direction of Si; (b)
if U faces the direction along the trajectory, S1 and
S2 are not able to view its face, although U is within
their coverage.

1. INTRODUCTION
Barrier coverage is one of the most important issue for var-

ious sensor network applications, e.g., national border con-
trol, critical resource protection, security surveillance and
intruder detection, etc. In a wireless sensor network, a bar-
rier is formed by a set of sensors whose sensing ranges are
contiguous and span (usually a strip area) across the moni-
tored field. Every object traversing the field from one side to
another is detected by the sensors on the barrier. Compared
to achieving full coverage, the number of sensors required
for barrier coverage is much less. Hence barrier coverage is
considered more scalable and attractive for large-scale de-
ployment in practice.

Previous studies in barrier coverage mainly focused on tra-
ditional scalar sensor networks, in which the sensing range
of a sensor is often modeled as a disk and an object is said
to be covered or detected by a sensor if it is within the sens-
ing range of the sensor [14]. Recently, there has been an
increasing interest in camera sensor networks [18, 10, 8, 2,
1, 22]. Compared with traditional scalar sensors, camera
sensors can provide much richer information of the environ-
ment in the forms of images or videos and hence promise a
huge potential in applications. However, the cost of camera
sensor is considered to be higher than scalar sensor. De-
ploying camera sensors for achieving full coverage in a large
scale is very hard if not impossible. Thus for applications
like security surveillance, it is desirable to build up a cost-
efficient “camera barrier” such that every intruder’s image
can be detected effectively.

However, the barrier coverage of camera sensors is much
different and more complicated than the traditional barrier
coverage problem. Simply combining the sensing range of
a series of cameras across the monitored field does not pro-



vide effective barrier coverage. This is because an intruder
may cross the barrier without being identified, i.e., its face
image could be missed (Figure 1). In fact, one fundamental
difference between camera and traditional scalar sensors in
coverage is that camera sensors may generate very different
views of the same object if they are from different view-
points. For example, if a camera is placed behind the in-
truder, no face image can be identified. Studies in computer
vision show that the object is more likely to be recognized
by the recognition system if the image is captured at or near
the frontal viewpoint [4], i.e., if the object is facing straight
to the camera. As the angle between the object’s facing di-
rection and the camera’s viewing direction (defined by the
vector from the object to the camera, Figure 1(a)) increases,
the detection rate drops dramatically [20, 17]. Therefore, to
maintain a high level surveillance quality, a good camera
barrier should guarantee that no matter where the travers-
ing object faces, there is always some camera to effectively
capture its face image.
In this paper, we study the barrier coverage in camera

sensor networks by leveraging the concept called full-view
coverage. An object is said to be full-view covered if there
is always a camera to cover it no matter which direction it
faces and the camera’s viewing direction is sufficiently close
to the object’s facing direction (rigorous definition is given
in Section 2). An effective camera barrier is essentially a
connected zone across the monitored field such that every
point within the zone is full-view covered.
Based on this model, we study the problem of construct-

ing camera barrier in both random and deterministic deploy-
ment. In practice, sensors can be either deployed randomly,
e.g., being dropped from aircraft to an inaccessible zone, or
deployed deterministically, e.g., being placed manually in a
controlled environment. In the first scenario, we have no
precise control on the positions of the camera sensors, and
a post-deployment procedure is needed to select cameras to
form a barrier. As mentioned above, the challenge here is
that selecting cameras with overlapped sensing range does
not guarantee a full-view covered barrier. For each point on
the barrier, there must be a set of active cameras spreading
around it and covering it from multiple viewpoints. What
makes the problem even more difficult is that the camera’s
viewing direction depends on the geometric relationship be-
tween the camera and the moving object, and the object’s
facing direction could point to anywhere. Hence bounding
the difference of the two vectors for good camera coverage on
the barrier is a big challenge. The same difficulties exist in
the second scenario where a deployment pattern should be
devised such that a line across the field is full-view covered
by the deployed cameras. Note that this is straightforward
in traditional disk sensing model since we can place sensors
one by one along the line with each one’s range overlapping
with its neighbors’. However, these solutions can not be
applied for camera barrier due to these new challenges.
The main contributions of this paper are as follows. First,

we define the camera barrier coverage problem based on the
full-view coverage model. It characterizes the unique re-
quirement of a good barrier coverage in camera sensor net-
works in practice. Second, we provide a series of procedures
to select camera sensors in an arbitrary deployment to form
a camera barrier that can effectively detect the intruder’s
face image, and introduce a method to reduce the camera
redundancy. Third, we devise a deployment pattern that
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Figure 2: The full-view coverage model.

can achieve camera barrier coverage in a deterministic de-
ployment. We analyze and optimize the number of cam-
eras used for this specific deployment under various camera
parameters. Finally, we validate our results by extensive
simulations.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the full-view coverage model and the con-
cept of camera barrier coverage. Section 3 gives the detailed
description on how to select cameras to form a camera bar-
rier in an arbitrary deployed camera sensor network. Sec-
tion 4 shows the details of a deployment pattern for camera
barrier coverage in a deterministic deployment and analyzes
the number of cameras needed in this deployment. Section 5
presents the evaluation results. The related work is reviewed
in Section 6 and the paper is concluded in Section 7.

2. NOTATIONS AND MODEL
Camera sensors1 are deployed to monitor a bounded re-

gion A (target field). Each sensor has a sensing range r,

a field-of-view (FoV) angle φ and an orientation vector f⃗i,
which together define the sensing sector (Figure 2(a)). We
use Si to denote the i-th sensor. Without ambiguity, Si also
denotes the sensor’s position. For any two points U, V , let
∥UV ∥ denote the (Euclidean) distance between them. For
any two vectors −→v1 and −→v2 , let α(−→v1 ,−→v2) denote the angle
between them, which ranges from 0 to π. A point P is cov-
ered by a sensor Si if P is in the sensing sector of Si, i.e.,

∥PSi∥ ≤ r and α(
−→
fi ,

−−→
SiP ) ≤ φ/2, where

−−→
SiP denotes the

vector from Si to P (Figure 2(b)).
Definition 2.1 (Full-View Coverage) A point P is full-

view covered if for any facing direction (i.e., any vector

d⃗), there is a sensor Si, such that P is covered by Si and

α(d⃗,
−−→
PSi) ≤ θ, where θ (∈ [0, π/2)) is a predefined parame-

ter which is called the effective angle. A region is full-view
covered if every point in it is full-view covered.

Based on this concept, we introduce the following defi-
nition of what a good barrier coverage in a camera sensor
network should be.

Definition 2.2 (Camera Barrier) Given a rectangular
field A with one side being the entrance and the opposite
side being the destination, a camera barrier B is a connected
region inside A such that B is full-view covered and every
path from one point on the entrance side to another point
on the destination side intersects with B.

For convenience, we assume the entrance side is at the
bottom and the destination side is on the top.

1We may interchangeably use cameras or sensors for short
through out the paper.
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Figure 3: (a) The plane is partitioned into sub-
regions; each sub-region is identified by a number;
(b) the graph is constructed based on the relation-
ship among the sub-regions; the number on the node
indicates the corresponding sub-region in (a).

3. CAMERA SELECTION FOR BARRIER
COVERAGE IN RANDOM DEPLOYMENT

In practice, camera sensors can be deployed randomly in
a target area and hence we do not have precise control over
the position of each camera. Even if the initial deployment
is controlled, sensors’ failure due to energy or other factors
can still make the network’s topology unpredictable. In this
section, we propose a method to select camera sensors from
an existing and arbitrary deployment to form a camera bar-
rier.
As mentioned in the introduction, simply selecting cam-

eras across the field with connected sensing range does not
necessarily form a camera barrier. We need to guarantee
that each point of the barrier is full-view covered. This
is the key challenge here. We approach this problem by
first converting the monitored field into a graph (discretiza-
tion) in which each node represents a small sub-region and
two nodes are connected if they are adjacent in the origi-
nal field. By doing this, we can verify the coverage quality
of each sub-region and determine a subset of nodes (sub-
regions) that are full-view covered. Then we find a path
from the left boundary to the right boundary, consisting of
nodes that are full-view covered. This path represents a set
of contiguous sub-regions across the field, which is essen-
tially the camera barrier we are looking for. We also utilize
some redundancy reduction techniques to effectively reduce
the number of cameras in use. We show the details in the
subsequent sections.

3.1 Discretization
Given a set of deployed sensors, field A can be partitioned
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Figure 4: The circular list of V is defined based on
the positions of the cameras covering V .

into sub-regions, where each sub-region is defined to be a set
of points covered by the same set of sensors. Two sub-regions
are adjacent if they share at least one common boundary,
which can be a line or arc segment from the boundary of the
sensing range of some sensors. We model all the sub-regions
and their relationship to each other by a graph G = (V,E).
Each node in V represents a sub-region. There is an edge
(i, j) between node i and j if and only if they are adjacent
sub-regions. An example of this graph is shown in Figure 3.

Two virtual nodes s and t are then added into this graph.
They represent the left and right boundaries of field A re-
spectively. There is an edge (s, i) between node s and i if
sub-region i intersects with the left boundary of A. Simi-
larly there is an edge (j, t) if sub-region j intersects with the
right boundary of A.

The number of sub-regions in G is O(n4), where n is the
total number of cameras. The reason is as follows. We can
consider the field A as a planar graph, where the vertices are
the crossing points of sensing sectors and edges are the line
or arc segments between any two crossing points. Since any
two sensing sectors can have O(1) crossing points on their
perimeters, the number of vertices is O(n2). This further
implies the total number of edges is O(n4). From Euler’s
formula [3], the number of faces, i.e., sub-regions, is thus
equal to 2−O(n2) +O(n4), which is O(n4).

3.2 Full-view Coverage Verification on Sub-
regions

For a given sub-region R, we need to verify if the condi-
tion in Definition 2.1 holds for every point in it. Note that
all points in R are covered by the same set of sensors. In
this section, we only consider this set of sensors. Since R
is always within their FoV, we can ignore their orientation

vectors (i.e., f⃗i). What really matters here is the position of
each camera and the geometrical relationship between them.

For any given point V ∈ R, we define a circular list of
these sensors regarding their viewing direction on V as fol-
lows (Figure 4). Initially the list is empty. We begin with

any vector
−−→
V Si and place it into the list first. Then we ro-

tate
−−→
V Si around V in the counterclockwise direction until

it becomes parallel to the next vector
−−→
V Sj . Then we place

−−→
V Sj into the list, right after

−−→
V Si. We continue rotating and

place the vectors sequentially into the list until we meet the
beginning vector again. Then the list is completed. The

list is denoted by CLV = {
−−−→
V SV1 , . . . ,

−−−→
V SVk}, where k is the

number of sensors covering R.
In such a list, each element has a “next” pointer pointing

to the element right after it. The “next” pointer of the last
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Figure 5: The safe and unsafe region of Si, Sj; here
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element, which is
−−−→
V SVk , points to the first element

−−−→
V SV1 .

Two lists are considered the same if they have the same set
of elements and the “next” pointer of each element points
to the same element in both sets. By using the concept of
circular list, the condition in Definition 2.1 is equivalent to
the following.
Lemma 3.1 A given point V is full-view covered if and

only if for CLV constructed as above, the rotation angle

from
−−−→
V SVi to

−−−−→
V SVi+1 is less than or equal to 2θ for any

1 ≤ i ≤ k, where Vk+1 = V1.

Proof. Suppose the condition holds. Then for any d⃗,
there are two sensor SVi and SVi+1 such that either the ro-

tation angle from
−−→
V Si to d⃗ or the angle from d⃗ to

−−−−→
V SVi+1 is

less than or equal to θ. Thus V is full-view covered.
Suppose V is full-view covered but the rotation angle from−−−→

V SVi to
−−−−→
V SVi+1 is larger than 2θ for some i. Then, consider

vector d⃗ along the bisector of the angle, the angle between

either
−−−→
V SVi or

−−−−→
V SVi+1 and d is larger than θ. Therefore the

condition is true.

We need to determine if the above condition holds for
every V ∈ R. To this end, we introduce the concepts of
safe and unsafe regions. For any two sensors Si and Sj , we
define the safe region to be the area in which for any point

V , α(
−−→
V Si,

−−→
V Sj) ≤ 2θ; and define the unsafe region to be

the area in which for any point V , α(
−−→
V Si,

−−→
V Sj) > 2θ. The

following lemma shows how to find the two regions (Figure
5).

Lemma 3.2 Given Si and Sj , there are two arcsøSiSj

and øSiSj

′
which connect Si and Sj and are symmetrical

with respect to the line SiSj , such that the unsafe region is
the enclosed region bounded by the arcs and the safe region
is the open region outside the unsafe region.

Proof. We show how to find the two arcs. First we can
find two different points Pθ and P ′

θ on the perpendicular
bisector of segment SiSj , such that ∠SiPθSj = ∠SiP

′
θSj =

2θ and they are on different sides of SiSj . Without loss of
generality, suppose Pθ is on the left side and P ′

θ is on the
right side (Figure 5).
We draw the circumscribed circles of triangle △SiPθSj

and△SiP
′
θSj . Denote the centers of the circles by OSiSj and

O′
SiSj

, and the radius (which is the same for both) by rsafe.

Then arcøSiSj is the portion of the perimeter of ⊙OSiSj on

the left side andøSiSj

′
is the portion of ⊙O′

SiSj
on the right.

In fact, for any circle and a fixed chord (defined here by
SiSj) of the circle, all inscribed angles with two endpoints

Figure 6: Dotted circles are the boundaries between
safe and unsafe regions of two neighboring cameras;
the shaded area of R is not full-view covered since
it is within the unsafe regions of S4, S5 and S5, S6.

at the ends of the chord are either equal or supplementary
to each other. Specifically, they are equal if the third points
of the angles are on the same side of the chord. Further-
more, for a given point Pθ on the perimeter of the circle and
another point P on the same side of line SiSj as Pθ, if P
is outside the circle (∥POSiSj∥ > rsafe), then ∠SiPSj <
∠SiPθSj ; if P is inside the circle (∥POSiSj∥ < rsafe), then
∠SiPSj > ∠SiPθSj . The proof of this property can be
found in any textbook on Euclidean Geometry and hence
omitted here.

Now we can give a necessary and sufficient condition for
R to be full-view covered under some constraint.

Theorem 3.3 Suppose for every point V ∈ R, the circular
list CLV = {SV1 , ..., SVk} is the same (in a circular way).
Then R is full-view covered if and only if it is within the
polygon bounded by {SViSVi+1 , 1 ≤ i ≤ k} and for any
1 ≤ i ≤ k, the unsafe region of SVi and SVi+1 does not
intersect with R, where Vk+1 denotes V1.

Proof. This is a corollary from Lemma 3.1 and 3.2.

The example in Figure 6 is illustration of our idea. In
this example, there are seven cameras covering sub-region R.
We draw the boundaries of the unsafe regions for the seven
pairs of neighboring sensors (indicated by dotted arcs) as in
Lemma 3.2, and check if they intersect with R. Note that
in computation this can be done by comparing the distance
between the circle’s center to each boundary segment of R
against the circle’s radius. As can be seen in the figure,
the unsafe regions of S4, S5 and S5, S6 intersect with R, and
hence the intersection area (shaded area of R) is not full-
view covered. All other areas in R are full-view covered.

There is one more issue: the circular list CLV may not
be the same for every point V ∈ R. For example in Figure
7, S1 is prior to S2 in V ’s list, but S2 is prior to S1 in U ’s
list. This happens if two cameras covering R are on a line
which intersects with R (e.g., the line S1S2 intersects with
R at X,Y ). To solve this problem, we need the following
concept.

Definition 3.4 (Partition) A partition is a maximal sub-
set of points in any sub-region R such that the circular list
of any point in the subset is the same.

Recall that two circular lists are considered the same if
they contain the same set of cameras and the relative orders
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Figure 7: The circular lists for U and V are different:
CLV = {S1, S2, S3, . . . , Sk}, CLU = {S2, S1, S3, . . . , Sk}.

of the cameras are the same. Thus we can use Theorem 3.3
to evaluate the coverage on each partition. To find all the
partitions of a sub-region, we divide the sub-region R by the
lines connecting any two cameras covering R. For example,
in the above example, R can be divided into two partitions
by S1S2XY . If there were another pairs of cameras like this,
then R would be further divided into more partitions.

3.3 Camera Selection for Barrier Coverage
Once the full-view verifications on all sub-regions have

been finished, the graph G can be simplified by removing all
nodes that are not full-view covered. Also, all nodes that
have only one neighbor can be removed since they can not
be intermediate nodes of any s− t path. In the final graph,
every s − t path (if there is) is actually corresponding to a
series of sub-regions that are all full-view covered and con-
nected together, and hence forming a camera barrier across
A. Among these paths (barriers), we want to select the bar-
rier which requires the minimum number of active cameras.
However, the number of s− t paths can be an exponential

function of the number of nodes. Hence it is not efficient
to search all the candidate paths to find the one with the
minimum cameras used. In fact, even if we were able to find
the path with the minimum cameras used, the path is still
not guaranteed to be the optimal as some redundancy may
exist on the path (see later discussion). Thus as a heuris-
tic, we use a shortest path between s and t which can be
found by Dijkstra’s algorithm [7]. Recall that in Dijkstra’s
algorithm, we start from the node s and gradually find the
shortest distance to every other nodes. A variable disti is
initialized to infinity and gradually updated for each node
i during the execution. It records the up-to-date shortest
distance from s to the node. A subset B of nodes whose
disti have been determined (i.e., not changing in the future)
is maintained. Each time a new node j which is not in the
subset and has the smallest distj is selected and added into
the subset. Meanwhile, for any of its neighbor k, if distk is
greater than distj +cost(j, k), distk is changed to the latter,
where cost(j, k) is the edge cost from j to k. In our case, the
cost of every edge is 1, although some optimization can be
done as we will see later. The algorithm stops if t is selected
and added into the set, which means the shortest path from
s to t is found.
One optimization can be made to the algorithm. We ob-

serve that two nodes are adjacent if the two sub-regions
share a common boundary. That means the two camera
sets covering these two sub-regions differ by only one ele-
ment, which further implies that one of the two sets includes
the other. Thus, if the sub-region covered by the larger set
is chosen to be working, the other sub-region can be covered

S1 S2

Figure 8: S1, S2, S3 all cover R and S3 is redundant
because the unsafe region of S1 and S2 does not in-
tersect with R.

at no additional cost. During the execution of Dijkstra’s al-
gorithm, we take advantage of this property by setting the
cost of the edge from the node with a larger camera covering
set to the node with a smaller subset to be 0, and all other
edges to be 1. This encourages the algorithm to select the
node which is covered by cameras that are already used.

3.4 Redundancy Reduction
The method described above has one drawback: there

could be many redundant cameras which can be turned
off without affecting the validation of the barrier. In our
method, for each sub-region on the barrier, all the cameras
covering this sub-region were turned on although some of
them may not be necessary. For example, in Figure 8 cam-
era S1, S2, S3 all cover sub-region R where S3 can be turned
off if S1 and S2 are both on. This issue becomes serious
if the camera deployment is dense. Therefore we propose
the following method to reduce the degree of redundancy.
Note that this is not an easy problem since a camera that is
redundant for one sub-region may be necessary for another
sub-region.

First we identify redundant cameras for each sub-region.
A camera Si is redundant with respect to a sub-region R if
R is still full-view covered after Si is turned off. Based on
Theorem 3.3, there is a simple way to test this. If the unsafe
region of the two neighboring cameras of Si (i.e., the two ad-
jacent to Si in the circular list) does not intersect with R,
then Si is redundant. Here we call these two cameras de-
pendent cameras of Si. Note that for the barrier to be valid,
the dependent cameras of Si should be working when Si is
turned off. For example, consider a camera S3 in Figure 8.
If the unsafe region of S1, S2 does not intersect R, S3 can
be turned off and S1 and S2 are the dependent cameras.
This judgement can be made during the verification proce-
dure in Section 3.2 and we need to consider each partition
separately as the neighbors of the cameras may change from
one partition to another. Finally, a camera Si is considered
a candidate to be turned off if it is redundant with respect
to all the sub-regions that are in its FoV and selected to
be part of the barrier (the s − t path). All the dependent
cameras of Si should be recorded during the above process.

Then we consider how to safely remove the redundant
cameras along the entire barrier. Note that we can not si-
multaneously remove all the candidates since some of them
could be dependent cameras for others. We want to turn
off as many cameras as possible without affecting the bar-
rier. For this purpose, a graph called the dependent graph
DG = (V,E) is constructed, where a node Si ∈ V if Si is
a candidate, and an edge (Si, Sj) ∈ E if Si is a dependent
camera of Sj or vice versa.
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Figure 9: Although none of the three sub-regions
R, R1 and R2 is full-view covered, a valid camera
barrier exists across the full-view covered portion
within the three sub-regions.

Theorem 3.5 The cameras in an independent vertex set
of the dependent graphDG can be turned off simultaneously
without affecting the validation of the barrier. In particular,
the maximum set of cameras that can be turned off simulta-
neously corresponds to a maximum independent vertex set
of DG.

Proof. Recall that an independent vertex set of a graph
is a set of vertices in which any two of them have no common
edges. Any two cameras from an independent vertex set of
the above graph can not be the dependent cameras of each
other, which further means their eligibility to be turned off
do not assume the existence of the other. Thus the theorem
is proved.

Finding the maximum independent vertex set is proved
to be NP-complete. Both centralized and distributed al-
gorithms (heuristics) have been studied extensively. One
possible solution can be found in [16].
The simulation results in Section 5 indicate that the al-

gorithm can substantially reduce the number of cameras in
use.

3.5 Discussion
Our algorithm of full-view coverage verification not only

answers the question if a sub-region is full-view covered, but
also precisely identifies which part of the sub-region is full-
view covered and which part is not. This is very important
because in some cases, even if a sub-region is not full-view
covered, which only means some portion may not be covered
as required, its full-view covered portion can still contribute
to the construction of the barrier. An illustration is shown in
Figure 9. In this example, none of the three sub-regions are
considered full-view covered. However, since the full-view
covered portion of the three is connected, it is still possible
to construct a barrier across them.
One interesting application of the above method is to iden-

tify the “weak spot” of the given deployment. For example,
the system planner may want to know if there are some
traversing paths from the entry side to the exit side such
that the object can follow without being identified by the
cameras. To answer this question, we just need to find a con-
nected zone from the entry to the exit such that every point
within the zone is NOT full-view covered. If such (breaking)
paths exist, a further question would be how to improve the
surveillance quality if more cameras can be deployed or the
original deployment can be adjusted (e.g., steering the de-
ployed cameras although some delay would be incurred [23]).
These are some extensions (dual problems) to the original
barrier construction problem. They are very practical since
sometimes the barrier may not exist but a metric to measure
the quality of the surveillance system in terms of coverage

k
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Figure 10: (a) Multiple cameras are bundled to-
gether to form one super camera with larger FoV;
(b) A deployment pattern for camera barrier cov-
erage: the black dots on the barrier denote regular
cameras; the grey area denotes the FoV of the super
cameras.

and a method to improve it are still needed. We leave these
issues as future work.

4. CAMERA BARRIER CONSTRUCTION IN
DETERMINISTIC DEPLOYMENT

In this section, we introduce a deterministic deployment
pattern for camera barrier coverage. Our goal is to deploy
a set of cameras to the monitored field such that each point
of a given barrier (line) is full-view covered and the number
of cameras used is as few as possible. We first describe the
deployment pattern and then analyze the number of cam-
eras used under various deployment parameters. Note that
although our focus here is on the case where the barrier is a
straight line, the technique can be extended to other scenar-
ios where the barrier consists of line segments, or the barrier
is a curve, although some approximation may be needed to
deal with curves.

4.1 Description of the Deployment Pattern
We first place cameras one by one along the barrier with

each one facing to the right, i.e., the camera’s orientation
vector fi is parallel to the barrier and points to the right.
The distance between every two adjacent cameras is r. Sim-
ilarly, a second set of cameras are placed one by one on the
barrier with each one facing to the left (Figure 10(b)).

Then we place another set of cameras along a line above
the barrier, with distance h to it, where h is a parameter
to be defined later. On this line, any two adjacent deploy-
ment spots are separated by distance δ (to be defined later).
At each deployment spot, we place k (to be defined later)
cameras together and merge their FoV to form a“super cam-
era” node with FoV equals to kφ (Figure 10(a)). Note that
each super camera can be considered as one camera with
larger FoV and all other parameters the same as a regular
camera. The orientation vector of each super camera points
down to the barrier. Symmetrically, we deploy another set
of super cameras along the line with distance h below the



barrier. Each super camera on this line points up to the
barrier (Figure 10(b)).
Now we elaborate how to derive the above three param-

eters: h, k and δ. Given the camera’s parameters (r, φ, θ),
we have some flexibility in choosing one parameter from (h,
k, δ), and the choice of the other two depends on the chosen
one. We give the relationship among them in the following
theorem.
Theorem 4.1Given 0 ≤ h ≤ r, in order to guarantee that

every point of the barrier is full-view covered, the minimum
value for k is k ≥ 2 arccos(h

r
) and the maximum value for

δ is δ ≤ min{δ1, δ2}, where δ1 =
√
r2 − h2 − h

tan 2θ
and

δ2 = 2h tan θ; and furthermore, h should be smaller than
h0 = r√

1+1/(tan 2θ)2
.

Proof. Consider an arbitrary point P on the barrier with

facing direction d⃗. We prove that if k and δ are as above,
there is always a sensor Si such that P is covered by Si and

α(d⃗,
−−→
PSi) ≤ θ.

We use the angle between d⃗ and the barrier, denoted as αd,

to represent d⃗ (i.e., let d⃗ rotate until it is parallel to the bar-
rier and pointing to the right; then the angle range crossed

is used to indicate d⃗). Since the deployment is symmetrical
with respect to the barrier, we only consider the case when
0 ≤ αd < π. First, notice that we have placed two group
of cameras on the barriers, with one group pointing to the
right and other pointing to the left. Thus if 0 ≤ αd ≤ θ or
π− θ ≤ αd < π, there is always a sensor from the two group

such that the above condition is satisfied for d⃗.
When θ ≤ αd ≤ π − θ, there are two extreme cases to

consider, which we show in Figure 11. The first case is
that there is a super camera Si+1 such that ∥PSi+1∥ =
r + ϵ, where ϵ is a positive number that can be arbitrarily
small. Hence P is just outside the coverage range of Si+1.

(Figure 11(a)). In this case, if d⃗ is along the direction
−−−−→
PSi+1,

either there is a super camera Si with distance less than r
(as shown in the figure, Si is to the left of Si+1 such that

α(d⃗,
−−→
PSi) ≤ θ), or the angle between d⃗ (i.e.,

−−−−→
PSi+1) and

the barrier is no more than θ. The second case is that the
projection point of P on the deploying line of the super
cameras is at the mid-point (denoted as M) of two adjacent

super cameras Si−1 and Si, and d⃗ is along the direction
−−→
PM

(Figure 11(b)). If the above condition holds for d⃗ in these

two cases, it also holds for other d⃗.
In the first case, let B be a point at the right end of the

barrier. We only need to show that ∠SiPB ≤ 2θ. Notice
that ∠SiPB ≤ arctan h

y
, where y =

√
r2 − d2 − δ. Since

δ ≤ δ1 =
√
r2 − h2 − h

tan 2θ
, as indicated in the assumption,

y ≥ h
tan 2θ

. Hence ∠SiPB ≤ 2θ.
In the second case, we only need to show that ∠MPSi ≤ θ.

Notice that ∠MPSi = arctan δ
2h

and δ ≤ δ2 = 2h tan θ, as
indicated in the assumption. Hence ∠MPSi ≤ θ.
For the minimum value of k, the above argument holds

only if for each super camera, a point P on the barrier with
distance r − ϵ (for any ϵ > 0) should be in the range of
the super camera (Figure 11(c)). Based on this and the
assumption that the super camera is with distance h to the
barrier, we can obtain the minimum FoV (denoted as Φ)
needed for the super camera as Φ = 2 arccos h

r
. Hence the

number of cameras needed for each super camera node is

k = ⌈Φ
φ
⌉ = ⌈ 2 arccos(h/r)

φ
⌉.
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Figure 11: Analysis on the relationship among the
deployment parameters.

Finally, the upper bound h0 is given by the constraint
δ1 ≥ 0. Therefore, the theorem is proved.

4.2 Analysis on Number of Cameras
Given the above dependency relationship of k, δ on h,

we optimize the choice of h such that the total number of
cameras used is minimized.

There are two groups of cameras: the first group consists
of the regular cameras deployed on the barrier and the sec-
ond group consists of two sets of super cameras deployed on
the two lines with distance h to the barrier. Without loss
of generality, let us consider a unit length of the barrier and
assume all the other parameters are unified. The number
of cameras used in the first group is 2 · 1

r
, where r is nor-

malized to unit length. This is independent of the choice of
h. The number of cameras needed for the second group is
N(h) = 2 ·k 1

δ
, which depends on the choice of h as indicated

in Theorem 4.1. In order to minimize the total number of
cameras, we need to minimize N(h).

Theorem 4.2 Given 0 ≤ h ≤ h0, where h0 is given in
Theorem 4.1, the density of cameras needed (i.e., number
per unit of length) in the above deployment is

ρ(r, θ, φ) =
2

r
+

⌈ 2 arccos(h1/r)
φ

⌉
h1 tan θ

where h1 = r√
1+(1/ tan 2θ+2 tan θ)2

.

Proof. The first part of the expression is the number of
cameras deployed on the barrier, which does not depend on
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Figure 12: Cameras needed for con-
structing a 100m barrier.
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the choice of h. To see the second part, we minimize N(h)
with respect to 0 ≤ h ≤ h0. From Theorem 4.1, we have

N(h) =
arccos(h/r)

min{δ1(h), δ2(h)}
,

where δ1(h) =
√
r2 − h2 − h

tan(2θ)
and δ2(h) = 2h tan(2θ).

As h increases, δ1(h) decreases and δ2(h) increases. When
h = h1 as indicated in the theorem, δ1(h) = δ2(h).

When h ∈ (0, h1), N(h) = arccos(h/r)
δ2(h)

. Since arccos(h/r)

is a decreasing function of h, the minimum value of N(h)
is obtained when h → h1. When h ∈ (h1, h0), N(h) =
arccos(h/r)

δ1(h)
. By calculating the derivative of N(h), we know

that N(h) is an increasing function of h within this interval.
Thus the minimum value is obtained when h → h1.

Figure 12 is an illustration of the above result. It shows
how many cameras are needed to construct a camera bar-
rier with length of 100m when θ is from π

12
to π

3
and r =

20m, 40m and φ = π
3
, π
2
respectively.

5. EVALUATIONS
In this section, we present the evaluation results. We first

compare the number of cameras needed for barrier coverage
and full coverage, i.e., every point of the monitored area is
full-view covered. Then we show how our algorithm reduces
the number of cameras used for the barrier coverage.

5.1 Comparison with Full coverage
One major advantage of barrier coverage over full cov-

erage is the cost-effectiveness. In camera sensor networks,
full coverage means that every point of the monitored field

is full-view covered. Since full-view coverage essentially re-
quires each point to be covered by multiple camera sensors
(at least ⌈π/θ⌉), the full coverage in camera sensor networks
is imaginably more demanding than in traditional scalar sen-
sor networks, and hence the saving by barrier coverage could
be more significant.

We have two scenarios here. In the first scenario, the
monitored field is 200m in width (along x-axis), 100m and
200m in length (y-axis) separately. The camera’s parame-
ters are r = 30m, θ = π/3, φ = 2π/3. Cameras are deployed
randomly and uniformly in the deployed field. To avoid the
boundary effect2, the deployed field is a larger area with
both the length and the width 2r longer than the monitored
filed. Figure 13 shows how the coverage probability varies
as the number of deployed sensor increases. To estimate the
probability, we run each experiment 500 times and the prob-
ability is obtained by dividing the number of times when the
desired coverage is achieved by 500. As the result in Figure
13 shows, the probability of the existence of a camera bar-
rier (denoted as “barrier”) is almost 1 when the number of
cameras deployed is beyond 1000 if the field length is 100.
On the other hand, at least 2500 cameras are needed for full
coverage (denoted as “full”). The difference is even bigger
if the field length is 200, where barrier coverage demands
no more than 1500 cameras but full coverage demands more
than 4000 cameras.

In the second scenario, the camera’s parameters and the
width of the monitored field are fixed as in the above. We

2If the deployment field is the same as the monitored field
and the deployment is random and uniform, then the point
close to the boundary is less likely to be covered than the
point in the center area.



change the length of the field from 50m to 200m and ob-
serve how many cameras are needed to achieve the desired
coverage (barrier and full) with at least 0.99 probability.
Note that in a random deployment given the same number
of deployed cameras, as the field length increases the cam-
era density will drop. As a result, to achieve the same high
probability of coverage (in both full and barrier coverage),
more cameras should be deployed. As shown in Figure 14,
the number of cameras required for barrier coverage is much
less than that in full coverage. As the field length increases,
the number of cameras required for full coverage increases
much faster than that for barrier coverage. This result is
consistent with our expectation: given the field width un-
changed, in full coverage the area to be full-view covered
increases linearly as the field length increases, and so does
the number of cameras needed; however since the barrier
is across the width of the field, which is unchanged during
the test, the number of cameras needed does not increase
that fast, and the advantage of cost-effectiveness of barrier
coverage is more obvious.

5.2 Impact of Camera Parameters
We study the impact of the three camera parameters: the

sensing range (radius) r, the FoV φ and the effective angle θ
on the probability of camera barrier coverage. In Figure 15,
it is shown that with different effective angle (θ) how the
probability of camera barrier coverage varies as the num-
ber of deployed cameras increases. The monitored filed is
100m × 200m. The sensing range r = 30m and the FoV
φ = 2π/3. The probability is estimated in the same way
as in the above experiment. Intuitively, smaller θ implies
more cameras required for an object to be full-view cov-
ered, and hence more cameras needed for a camera barrier.
This is exactly what the figure shows. As θ = π/12, about
3000 cameras are needed for the existence of a camera bar-
rier with probability approaching 1. On the other hand, no
more than 500 cameras are needed if θ = π/2. Note that
θ = π/12 means a qualified image must be taken when the
object’s facing direction is no more than 15 degree away
from the frontal view, which is a very high quality require-
ment in practice. Even reducing the level a little to θ = π/6
(30 degree) can dramatically reduce the required scale of
deployment.
Figure 16 shows the number of cameras needed (y-axis) in

deployment to achieve a 0.99 probability of a camera barrier.
As in the above experiment, the field size is 100m × 200m.
Here the effective angle θ is fixed to be π/3. There are three
curves, for φ = π/3, π/2 and 2π/3 separately. Each curve
shows how the required number of deployed cameras de-
creases as the sensing range increases given a fixed FoV. By
comparing the three curves, it can be seen that as the FoV
becomes wider, the number of cameras needed is reduced.

5.3 Number of Cameras on Barrier
The effectiveness of redundancy reduction is shown in Fig-

ure 17. In this test, we vary the total number of deployed
cameras and observe the number of cameras in use. The
camera’s parameters are r = 30m, θ = π/3, φ = 2π/3, and
the monitored filed is 100m×200m. As can be seen, if no re-
dundancy reduction is used (indicated as “Shortest Path”),
the number of cameras in use increases (almost linearly)
as the total number of deployed cameras increases. This
is because in the original algorithm, all cameras covering

a sub-region is selected if this sub-region is chosen to be
on the barrier. As the redundancy reduction procedure is
carried out (indicated as “Shortest Path w/RR”), the redun-
dant cameras are turned off as many as possible. Moreover,
as more cameras are deployed, there is more flexibility on
camera selection, and the number of cameras in use drops.

6. RELATED WORK
Barrier coverage has been first studied in [9]. In wireless

sensor networks, one related problem is the maximum breach
and minimum exposure path problem [15, 12]. In this prob-
lem, the coverage quality of a sensor (or exposure) is mod-
eled as a decreasing function of the distance between the
sensor and the object. The goal is to find a traversing path
in a deployed sensor network such that the maximum expo-
sure is minimized. After the introduction of the problem,
some distributed algorithms have been proposed, in which
sensor collaboration is exploited to detect the intruder [6,
21].

The concepts of weak and strong barrier coverage in wire-
less sensor networks are introduced in [11]. A wireless sen-
sor network provides weak barrier coverage if the intruder is
guaranteed to be detected when it takes the shortest path
(i.e., an orthogonal line) to cross the field. Strong barrier
coverage guarantees the detection of the intruder no matter
what kind of path it takes. They obtain the critical condi-
tion of weak barrier coverage in a random deployment. The
critical condition for strong barrier coverage is obtained in
[13] by using percolation theory. They also give a distributed
algorithm to construct the sensor barrier. An effective way
of measuring the quality of barrier coverage is proposed in
[5]. The idea is that if the intruder is guaranteed to be de-
tected when its path is confined in a sliced area with a given
width (bounded), then the bound of this width can be used
to measure the quality of the barrier. Under this model,
the strong barrier coverage and the weak barrier coverage
are two extreme cases. They also provide an efficient way to
find the weak point of the barrier based on the measurement
results. The concept of barrier information coverage is intro-
duced in [25]. The basic idea is to exploit the collaboration
between sensors on target detection to reduce the number of
sensors in use and hence prolong the network lifetime. Fi-
nally, the problem of constructing sensor barrier with mobile
sensor is studied in [19]. An optimization algorithm is given
to schedule the movement of the mobile sensors for barrier
coverage under the constraint that the moving distance of
each mobile sensor is limited.

The full-view coverage model is first introduced by us in
[24]. A full-view coverage verification method is proposed
and an estimate of deployment density to achieve full-view
coverage for the whole monitored area is given. We adopt
a similar technique for full-view coverage verification in the
second step of barrier construction for arbitrary deployment.
The difference is as follows. In [24], coverage verification
only needs to be applied to the boundary of the sub-regions
as it is a“yes”or“no”problem and the whole area is full-view
covered if and only if each boundary segment is full-view
covered. However, in this paper, since the barrier coverage
is a construction problem which is much complex, we need
a finer analysis on each sub-region to show exactly which
part of each sub-region is full-view covered and which part
is not. As mentioned in the end of Section 3, this can help
precisely identify and construct the barrier.



7. CONCLUSION
Barrier coverage is attractive for many practical applica-

tions of wireless sensor networks. There is no exception for
camera sensor networks, which combine the technology ad-
vancement in both computer vision and wireless sensor net-
works, and are believed to be the key component for many
appealing applications. However, because of the unique fea-
ture of camera sensors, the barrier coverage problem is more
challenging and hence deserves more studies.
A good camera barrier should be able to detect any desired

aspect (face) of the intruder traversing the monitored field.
In this paper, we exploited the concept of full-view coverage
and proposed a systematic way to build up a camera barrier
in both random and deterministic deployment. A camera
barrier with the full-view coverage property guarantees that
no matter where the intruder faces, it will always be detected
by an active camera whose viewing direction is close enough
to the intruder’s facing direction and hence the face image
can be identified effectively. We designed a novel method to
construct a camera barrier in any given sensor deployment.
As some redundant cameras may exist on the barrier which
can increase the cost, we also presented a method to reduce
the degree of redundancy without affecting the validation of
the barrier. A deterministic deployment pattern for cam-
era barrier construction was also proposed. The number of
cameras used has been analyzed and optimized under vari-
ous camera parameters for this specific deployment pattern.
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