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ABSTRACT
A prerequisite for secure communications between two sen-
sor nodes is that these nodes exclusively share a pairwise
key. Although numerous pairwise key establishment (PKE)
schemes have been proposed in recent years, most of them
have no guarantee for direct key establishment, no resilience
to a large number of node compromises, no resilience to
dynamic network topology, or high overhead. To address
these limitations, we propose a novel random perturbation-
based (RPB) scheme in this paper. The scheme guarantees
that any two nodes can directly establish a pairwise key
without exposing any secret to other nodes. Even after a
large number of nodes have been compromised, the pairwise
keys shared by non-compromised nodes remain highly se-
cure. Moreover, the scheme adapts to changes in network
topology and incurs low computation and communication
overhead. To the best of our knowledge, the RPB scheme is
the only one that provides all these salient features without
relying on public key cryptography. Through prototype-
based evaluation, we show that the RPB scheme is highly
efficient and practical for current generation of sensor nodes.
In particular, to support a sensor network with up to 216

nodes, establishing a pairwise key of 80 bits between any
two 8-bit, 7.37-MHz MICA2 motes only requires about 0.13
second of CPU time, 0.33 KB RAM space, and 15 KB ROM
space per node.
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1. INTRODUCTION
In a typical wireless sensor network, node-to-node com-

munication is the most common communication model [1,2].
For example, a node may exchange routing control informa-
tion with a neighbor, send its sensor readings (or decisions)
to a direct neighbor node towards a base station or towards a
cluster head (or an aggregation point) that is probably mul-
tiple hops away. A node may also communicate with a mo-
bile sink to provide sensor data or other services [3]. Because
messages are transmitted in the open air, inter-node com-
munication is subject to simple eavesdropping. Especially, if
two communicating nodes are not within each other’s trans-
mission range, their messages may have to go through mul-
tiple hops, which further increases the risk of being eaves-
dropped or being modified. To secure their communication,
it is necessary for the communicating nodes to share a secret
key for encryption and authentication in the first place.

In general, pairwise key establishment (PKE) in sensor
networks is challenging because of the potentially large net-
work scale and the constrained system resources. Moreover,
sensor networks are often deployed in unattended and adver-
sarial environments. Due to these challenges, a PKE scheme
must meet the following requirements:

• Resilience to Large Number of Node Compromises —
A PKE scheme should be resilient to a large number of
node compromises because sensor nodes are low-cost;
hence they cannot afford tamper-resistance hardware.
Recent advances in physical attack show that even
memory chips with built-in tamper-resistance mech-
anisms are subject to various memory read-out at-
tacks [9–12]. Thus, an adversary may capture many
sensor nodes and analyze them to obtain their secret
keys.

• Guaranteed Key Establishment — A PKE scheme should
guarantee that any two nodes can establish a pairwise
key whenever needed.

• Direct Key Establishment — A PKE scheme should
allow two nodes that can communicate (directly or in-
directly) with each other to establish a pairwise key



Table 1: Comparison of Major PKE Schemes With Respect to Several Desired Properties [ProbKShare:
Probabilistic Key Predistribution-based PKE Schemes; ProbPShare: Probabilistic Polynomial Share
Predistribution-based PKE Schemes]

Scheme RPB SNEP LEAP ProbKShare ProbPShare Blundo
Property (ours) ( [1]) ( [2]) ( [4,5] etc.) ( [6,7] etc.) ( [8])
Resilience to Large Number of Node Compromises

√ √ √ √
Guaranteed Key Establishment

√ √
Direct Key Establishment

√ √
Resilience to Dynamic Network Topology

√ √
Efficiency

√ √ √ √

without exposing secrets to or obtaining secrets from
any third parties (e.g., a central on-line server or other
helper nodes). The involvement of third parties is
highly undesirable because third parties may have been
compromised, they may not be available, and more
messages have to be exchanged among involved nodes.

• Resilience to Dynamic Topology — A PKE scheme
should work even if one or both nodes are mobile. In
some applications, a mobile sink (a mobile sensor [13]
or a mobile soldier) may perform some tasks in a sensor
network, which require secure communication between
the mobile sink and sensor nodes.

• Efficiency — A PKE scheme should be efficient in com-
putation, communication, and storage.

In summary, a practical PKE scheme for sensor networks
should be efficient, resilient to attacks, and guaranteeing
direct key establishment irrespective of network topology
and node mobility. Although many PKE schemes [1, 2, 4–
7, 14–18] have been proposed for sensor networks, most of
them make tradeoffs among different requirements. Table 1
shows that none of the major PKE schemes provide all the
required properties except our RPB scheme.

Recently, a number of public key-based approaches have
been proposed for PKE in sensor networks. With only soft-
ware implementation, the public key-based PKE approaches
incur a delay ranging from several seconds to tens of sec-
onds [19–21]. The performance can be significantly im-
proved with special hardware support [22], but the intro-
duction of special hardware raises the manufacturing cost,
contradicting the goal of low-cost in deploying sensor net-
works. Although the performance of the public key-based
approach might also be improved through the techniques
such as instruction-level optimization for particular archi-
tectures, our RPB scheme is still more efficient and easier
to implement since it involves only simple operations, has
low cost, and can be implemented independently of the ar-
chitecture.

Contributions This paper presents a random perturba-
tion based (RPB) scheme for pairwise key establishment in
sensor networks. Compared to the previous PKE schemes
our RPB scheme makes the following contributions:

• First, any two nodes that can communicate with each
other can always establish a pairwise key whenever
needed, regardless of the network size and topology,
node density, and node mobility. Moreover, nodes do
not expose secrets to or obtain secrets from other nodes
for PKE; hence, established keys are not exposed to

others. These properties make our RPB scheme appli-
cable to large-scale distributed sensor networks as well
as mobile ad hoc networks.

• Second, the cost for an adversary to break the pair-
wise keys shared by non-compromised node pairs is
prohibitively high, even after the adversary has com-
promised a large number of nodes.

• Third, both the idea of adding random noise into a key
establishment process and our key construction tech-
nique are very novel. It is well known that a threshold
secret sharing based system [8,23,24] provides the bi-
nary security property. That is, the system is uncon-
ditionally secure if the number of colluding users are
no more than a threshold value, whereas the system is
completely broken if the threshold value is exceeded.
By introducing random perturbation, our RPB scheme
blurs the threshold value in Blundo scheme [8] and
provides strong security under colluding attacks by a
large number (� the threshold) of nodes. Although
our scheme does not provide unconditional security as
Blundo scheme does, our design has ensured that its
computational security is strong enough to defeat any
known attacks.

• Fourth, through analysis and prototype implementa-
tion in real sensors, we demonstrate that the RPB
scheme is highly favorable for the current generation
of sensor nodes because it is computationally efficient,
only requires a small storage space, and has little com-
munication overhead.

Organization The rest of the paper is organized as fol-
lows. Section 2 introduces the system model and briefly
describes the key distribution scheme proposed by Blundo
et al. [8], which is the basis of our RPB scheme. Section
3 and 4 provide the basic idea and the detailed description
of the RPB scheme. Section 5 analyzes the security proper-
ties. Prototype implementation and evaluation are reported
in Section 6. Finally, Section 7 concludes the paper.

2. PRELIMINARIES

2.1 System Model
We consider a wireless sensor network that is composed of

low-power, low-cost sensor nodes, e.g., the Berkeley MICA
motes [25]. These nodes have limited power supply, stor-
age space, and computational capability. In particular, each
MICA2 mote [25] has an 8-bit 7.37-MHz processor, 4 KB
primary memory (SRAM), and 128KB program memory



(ROM). Due to the constrained resources, computationally
expensive and energy-intensive operations are not favorable
for such systems. In addition, each sensor node is not tamper-
resistant. Once a sensor node is captured, the adversary can
read its memory to get all information stored there. The sen-
sor network is administrated by an offline authority, which
is responsible for node initialization and deployment. Before
deploying a node, the authority assigns the node a unique
identity (ID) from a set of legitimate IDs.

2.2 A Polynomial-Based Key Predistribution
Scheme

In the context of sensor networks, we briefly review the
polynomial-based key predistribution scheme proposed by
Blundo et al. [8], which is the basis of our RPB scheme. To
predistribute pairwise keys, the authority randomly picks a
t-degree symmetric, bivariate polynomial

f(x, y) =
X

0≤i,j≤t

Ai,jx
iyj

over a finite field Fq, where q is a large prime number. The
authority assigns a unique id (e.g., u) to each node before
deploying it into the network. The authority also computes
and preloads a univariate polynomial share of f(x, y) for the
node. In particular, for the node of id u, the preloaded share
is f(u, y) =

Pt
j=0 Bu,jy

j , where Bu,j =
Pt

i=0 Ai,ju
i. For

any two nodes u and v, node u can compute the key shared
with node v, i.e., f(u, v), by evaluating f(u, y) at y = v.
Node v can compute f(v, u) in the similar way. Since f(x, y)
is symmetric, f(u, v) = f(v, u). So, node u and v can agree
on the same key for communication. The above process is
also illustrated in Fig. 1.

f(u,y) f(v,y)

f(u,v)
f(v,u)

pairwise key shared by nodes u and v

node u node v

Figure 1: A polynomial-
based scheme for generat-
ing pairwise keys

+
u

f(x,y)

node ID u

φ  (y)

Perturbation
polynomial f(u,y)

g  (y)
u

Figure 2: Generating
the perturbed poly-
nomial gu(y)

The security proof in [8] ensures that this scheme is un-
conditionally secure and t-collusion resistant; i.e., a coalition
of no more than t compromised nodes cannot know anything
about the key shared by any two non-compromised nodes.
However, if (t + 1) or more nodes are compromised, the ad-
versary can find out the pairwise key shared by any two
non-compromised nodes. Suppose nodes u0, u1, · · · , ut are
compromised. The adversary can construct (t + 1) systems
of linear equations, and each system includes (t + 1) lin-
ear equations, where the ith system of linear equations is as
follows:

tX

j=0

Aj,iu
j
k = Buk,i, k = 0, · · · , t. (1)

By solving these linear equations, the adversary can find out
all the coefficients of f(x, y), i.e., Ai,j (0 ≤ i, j ≤ t).

In the above scheme, the security level can be improved by
increasing t. However, this is not scalable since the computa-

tional complexity and the storage overhead increase rapidly
as t increases. To address the problem, Liu and Ning [7] pro-
posed schemes that combine the above scheme with the key
pool idea [4,5]. But, these schemes cannot guarantee direct
key establishment. Also, these schemes allow two nodes fail-
ing in directly establishing a pairwise key to find other nodes
to help set up a key, which may result in extra (sometimes
high) communication overhead and another severe security
breach, i.e., exposing secret keys to other nodes which could
be compromised.

3. BASIC IDEA OF THE RPB SCHEME
To securely establish pairwise keys and meanwhile prevent

a large number of compromised colluding nodes from break-
ing the pairwise key shared by any two innocent nodes, we
propose a random perturbation-based (RPB) scheme. This
scheme relies on polynomials to generate pairwise keys, and
the polynomials are defined over a finite field denoted as
Fq , where q is a prime number. Before presenting the basic
idea of the RPB scheme, we first list some notations and
introduce a new concept called perturbation polynomials.

3.1 Notations
Following is a list of notations used in presenting the basic

idea of RPB:

• q, l: q is a prime number (q > 2), and l is the minimal
integer such that 2l > q. Thus, every element in field
Fq can be represented by l bits.

• S: a set of legitimate IDs for sensor nodes. In this
paper, we let S ⊂ {0, · · · , q − 1}.

• r: a positive integer such that 2r < q.

• Φ: a set of perturbation polynomials (to be defined in
Section 3.2).

• f(x, y): a symmetric polynomial, in which the degree
of x and y are both t (t is a system parameter).

• gu(y) (u ∈ S): a t-degree univariate polynomial that
is preloaded to node (with id u) before it is deployed.

3.2 Perturbation Polynomials
In RPB, we introduce the concept of perturbation polyno-

mial, which is defined as follows:

Given a finite field Fq , a positive integer r (2r < q), and
a set of node IDs S (S ⊂ {0, · · · , q− 1}), a polynomial
set Φ is a set of perturbation polynomials regarding r
and S if any polynomial φ(.) ∈ Φ has the following
limited infection property:

∀u ∈ S, φ(u) ∈ {0, · · · , 2r − 1}.

The above definition ensures that the value of a perturba-
tion polynomial will not be grater than 2r − 1; i.e., it has at
most r bits. This property is exploited in our design of the
RPB scheme. Note that, adding a r-bit number to a l-bit
number (l is the minimal integer such that q < 2l), the least
significant r bits of the l-bit number are directly affected,
while whether its most significant l − r bits is changed or
not depends on if a carry being generated from the least sig-
nificant r bits in the addition process. For example, adding



(101000)2 by (0101)2 changes its least significant r = 4 bits
but does not change the most significant l−r = 2 bits; how-
ever, adding it by (1010)2 changes both its least significant
4 bits but also the most significant 2 bits.

3.3 Basic Idea of The RPB Scheme
In the basic polynomial-based scheme [8], where any two

nodes (with IDs u and v) are given shares (f(u, y) and
f(v, y)) of a symmetric polynomial f(x, y), they can always
find a match (f(u, v)) to be used as the shared key of size
l bits. Different from this, the RPB scheme does not give
each node the original share but the perturbed share, which
is the sum of the original share and a perturbation polyno-
mial with the limited infection property. The motivation for
adding the perturbation with limited infection can be sum-
marized as follows:

• First, adding perturbation polynomials makes it harder
to break the symmetric polynomials. This is because
the adversary cannot obtain the original shares of poly-
nomial f(x, y), and thus, as to be discussed in Sec-
tion 5, it has prohibitively high complexity to break
f(x, y) even if it has compromised a large number of
sensor nodes.

• Second, two nodes can still establish a key, though
the addition of perturbation polynomials changes the
values of the original match key (f(u, v)) at both sides.
The principle behind this can be explained as follows:

The addition of the perturbation polynomials di-
rectly affects the r least significant bits of the l-bit
original match key (this is because of the way we con-
struct φ to have the limited infection property) and
may also affect the most significant l − r bits of the
original match key due to the carry generated in the
addition process. Because the perturbation polynomi-
als added to nodes u and v are different, this addition
changes the original match key at both nodes into new
values that do not match anymore. However, we can
throw away the least significant r bits of the results
after the addition, and thus, we only have to deal with
the most significant l − r bits of the results. In some
cases these l−r bits stay the same at both nodes u and
v, so we still have a match to be used for our shared
key; in other cases some of these l− r bits are changed
but, as to be shown later, they must belong to only
two predictable cases, so we can still find a match to
be used as the shared key.

To further explain the above basic idea, we now intro-
duce the three major steps of the RPB scheme: system ini-
tialization, predistribution of perturbed polynomials and key
establishment.

3.3.1 System Initialization
The authority arbitrarily constructs a bivariate polyno-

mial f(x, y), where the degrees of x and y are both t (t is a
system parameter), and for any x and y, f(x, y) = f(y, x).
Then, the authority picks system parameter r, constructs a
node ID set S ⊂ {0, · · · , q − 1}, and constructs a set of per-
turbation polynomials Φ regarding S and r. The procedure
for constructing S and Φ are detailed in Section 4.4.

3.3.2 Predistribution of Perturbed Polynomials
Before a node (with id u ∈ S) is deployed, due to the

reasons presented in Section 3.3, the authority does not
preload the original polynomial share of f(x, y), i.e., f(u, y),
to the node. Instead, as shown in Fig. 2, the authority
randomly picks a polynomial φu(y) from Φ and preloads
gu(y) = f(u, y) + φu(y) to node u. Note that node u is
only given the coefficients of gu(y), so it cannot find out the
coefficients of either f(u, y) or φu(y) from gu(y).

3.3.3 Pairwise Key Establishment
We now show how any two nodes (say u and v) can es-

tablish a pairwise key. When node u wants to communicate
securely with node v, it initiates the key establishment pro-
cess:

Step 1: Node u evaluates gu(y) at y = v, and repre-
sents the evaluation result in l binary bits.

Step 2: It uses the most significant l − r bits of gu(y),
denoted as Ku,v, as the key.

Step 3: Node u sends h(Ku,v) to node v, where h(.)
is a secure hash function such that any node overhear-
ing h(Ku,v) cannot derive Ku,v. In theory, h(.) can
be any secure hash function. Since RC5 [26] has been
implemented in sensor nodes (e.g., in TinySEC [27])
and have been adopted in the implementation of other
sensor network key management schemes such as [7],
we use it as the hash function in our prototype imple-
mentation.

After receiving h(Ku,v), node v goes through the following
steps to construct three keys denoted as Kv,u, K−

v,u and
K+

v,u:

Step 1: Node v evaluates gv(u), gv(u)+2r and gv(u)−
2r.

Step 2: Each evaluation result is represented in l bi-
nary bits, and its most significant l−r bits is computed
and assigned to Kv,u, K+

v,u or K−
v,u, respectively.

As stated in Theorem 1, one of Kv,u, K−
v,u and K+

v,u that
are computed by node v must be the same as Ku,v that is
sent by node u.

Theorem 1. For any two nodes u and v, where {u, v} ⊂
S, it holds that Ku,v = Kv,u, Ku,v = K+

v,u, or Ku,v = K−
v,u.

Proof. (See Appendix A)

Examples: Some examples are shown in Fig. 3 to illus-
trate the property stated in Theorem 1. In these examples,
the prime number q is 457 (i.e., (111000111)2), l is 9, and r
is 4. That is, f(u, v), f(v, u), gu(v) and gv(u) can be rep-
resented by l = 9 binary bits; φu(v) and φv(u) can be rep-
resented by r = 4 binary bits. For the examples in Fig. 3,
Ku,v, Kv,u, K−

v,u and K+
v,u are the most significant l−r bits

of gu(v), gv(u), gv(u) − 2r and gv(u) + 2r. We can see four
cases regarding the matching between these keys:

• Case i: As shown in Fig. 3(a), if neither f(u, v)+φu(v)
nor f(v, u) + φv(u) generates a carry from bit r − 1 to
bit r, we have Ku,v = Kv,u.
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Figure 3: Examples of Using RPB to Generate Pairwise Keys [All the arithmetic operations are over finite
field Fq and q = (111000111)2 .]

• Case ii: As shown in Fig. 3(b), if only f(v, u) + φv(u)
generates a carry from bit r−1 to bit r, we have Ku,v =
K−

v,u.

• Case iii: As shown in Fig. 3(c), if only f(u, v) + φu(v)
generates a carry from bit r−1 to bit r, we have Ku,v =
K+

v,u.

• Case iv: As shown in Fig. 3(d), if both f(u, v)+φu(v)
and f(v, u) +φv(u) generates a carry from bit r− 1 to
bit r, we have Ku,v = Kv,u.

Based on Theorem 1, node v can find out Ku,v by com-
puting h(Kv,u), h(K+

v,u) and h(K−
v,u), and comparing them

with h(Ku,v) sent by node u as follows:

• h(Ku,v) = h(Kv,u) ⇒ Ku,v = Kv,u.

• h(Ku,v) = h(K+
v,u) ⇒ Ku,v = K+

v,u.

• h(Ku,v) = h(K−
v,u) ⇒ Ku,v = K−

v,u.

3.4 Remaining Issues
Comparing Fig. 1 to Fig. 3, we can see that using the

RPB scheme reduces the size of the generated pairwise key
because some bits of the polynomial evaluation results are
cut off. To deal with this problem, we use multiple polyno-
mials to generate multiple key segments, and combine them
together to form a pairwise key with the desired size. This
will be described in Section 4.

Another challenge in implementing the RPB scheme is to
construct a set of perturbation polynomials that has the lim-
ited infection property. In Section 4, we will also investigate
this issue and propose an algorithm to solve it.

4. DETAILED DESCRIPTION OF THE RPB
SCHEME

In this section, we present more details of the RPB scheme
that can support large-scale networks and can compute keys
with a large size. In addition to the notations q, l, r, S and Φ
introduced in the above, we further introduce the following
notations:

• N : the desired size of a sensor network; i.e., the largest
number of sensor nodes that a sensor network is ex-
pected to contain.

• L: the desired size (in the unit of bits) of each pairwise
key.

• fi(x, y) (i = 0, · · · , m−1): a set of symmetric bivariate
polynomials constructed by the offline authority, where
the degrees of x and y are both t.

• gu,i(y) (i = 0, · · · , m− 1, u ∈ S): a set of univariate t-
degree polynomials preloaded to node with id u before
it is deployed.

4.1 System Initialization
Based on the system requirements, including the desired

sensor network size (N) and the desired pairwise key size
(L), the following steps are performed to bootstrap the sys-
tem:

(1) The authority arbitrarily constructs m = 	L/(l − r)

polynomials fi(x, y) (i = 0, · · · , m − 1) over Fq. Note
that for any two nodes u and v, only l−r bits of fi(u, v)
can be used for pairwise key (as shown in Fig. 3).
Therefore, 	L/(l−r)
 of such polynomials are required
for generating a pairwise key of L bits.

(2) The authority constructs a set (S) of legitimate ids
and a set (Φ) of perturbation polynomials such that,
Φ has the limited infection property regarding S and
r. How to perform this step is an important but com-
plicated issue. To help readers get a big picture of the
RPB scheme, we defer a detailed description of the
construction process to Section 4.4.

4.2 Predistribution of Perturbed Polynomials
Before a node is deployed, the offline authority assigns to

it a unique id u from the id set S and m univariate polyno-
mials gu,i(y) (i = 0, · · · , m − 1), where

gu,i(y) = fi(u, y) + φu,i(y), i = 0, 1, · · · , m − 1, (2)

and each φu,i(y) is a perturbation polynomial randomly
picked from the perturbation polynomial set Φ. Note that
node u cannot find out fi(u, y) or φu,i(y) from gu,i(y). Also,
all φu,i(y) (i = 0, · · · , m − 1, u ∈ S) are picked from Φ in-
dependently.



4.3 Pairwise Key Generation
The key establishment process between any two nodes u

and v is similar to the one described in Section 3, except
that u and v should establish the key based on the shares of
multiple (m) polynomials. We describe this process in the
following steps:

(1) For each gu,i(y) (i = 0, · · · , m − 1), node u computes a
key segment su,i, which is the most significant (l − r) bits
of gu,i(v). A concatenation of these key segments, denoted
as Ku,v = (su,0 | su,1 | · · · | su,m−1), is used as the pairwise
key shared with node v.

(2) Having computed Ku,v, similar to the process described
in Section 3, node u should send a hash value of Ku,v to
node v. This can be constructed as the exclusive-OR of the
hash values of su,i (i = 0, · · · , m−1); i.e., H(Ku,v) = h(su,0 |
R0)

L
h(su,1 | R1)

L · · ·L
h(su,m−1 | Rm−1). Then, H(Ku,v)

is sent to v. In the computation of H(Ku,v), R0, · · · , Rm−1

are large random numbers shared by all sensor nodes. They
are used such that, for any two different i and j in {0, · · · , m−
1}, even if su,i = su,j , h(su,i | Ri) �= h(su,j | Rj) since
Ri �= Rj . Note that using

L
to construct the H(Ku,v) is a

special case of the XOR-MAC scheme [28], which has been
proved to be secure.

(3) On receiving H(Ku,v) from node u, node v computes
three segments (denoted as sv,i, s+

v,i and s−v,i) for each gv,i(y)
(i = 0, · · · , m − 1). Here, sv,i is a bit-string extracted from
gv,i(u) in the same way as node u extracts su,i from gu,i(v)
(detailed in Step (1)). s+

v,i and s−v,i are also extracted in the
same way from gv,i(u) + 2r and gv,i(u) − 2r, respectively.

(4) Similar to the cases explored in Section 3, su,i (i =
0, · · · , m − 1) could be equal to one of sv,i, s+

v,i and s−v,i

with the same probability. Therefore, Ku,v must be equal
to one of the following 3m strings:

s′v,0 | s′v,1 | · · · | s′v,m−1,

where each s′v,i ∈ {sv,i, s
+
v,i, s

−
v,i}. Specifically, let us suppose

m = 2, all the 32 = 9 strings are:

Kv,u,0 = sv,0 | sv,1, Kv,u,1 = sv,0 | s+
v,1,

Kv,u,2 = sv,0 | s−v,1, Kv,u,3 = s+
v,0 | sv,1,

Kv,u,4 = s+
v,0 | s+

v,1, Kv,u,5 = s+
v,0 | s−v,1,

Kv,u,6 = s−v,0 | sv,1, Kv,u,7 = s−v,0 | s+
v,1,

Kv,u,8 = s−v,0 | s−v,1.

To find out Ku,v, node v computes H(Kv,u,i) for each i ∈
{0, · · · , 8}. For example, H(Kv,u,4) = h(s+

v,0 | R0)
L

h(s+
v,1 |

R1). A string Kv,u,i is equal to Ku,v iff H(Kv,u,i) is equal
to the received H(Ku,v).

4.4 Constructing S and Φ

How to construct the id set S and perturbation polynomial
set Φ is vital for the RPB scheme, and the construction
process should satisfy the following Requirements:

(a) For the RPB scheme to work, limited infection prop-
erty should be satisfied for S and Φ.

(b) The size of S should be large in order to support a
large-scale sensor network.

(c) Φ should include more than one randomly constructed
perturbation polynomial. As to be shown in Theorem
2 of Section 5, this is important for the security of the
RPB scheme because the time complexity to break the
system is Ω(m∗ | Φ |t+1).

(d) To efficiently use the RPB scheme, the computation
complexity for constructing S and Φ should be as low
as possible.

Our approach for constructing S and Φ is based on the
following idea. We first initialize S1 = {0, · · · , q−1} as a set
of legitimate ids. A t-degree univariate polynomial, denoted
as φ̂1(y), is randomly constructed. The polynomial maps all
the IDs in set S1 into multiple groups based on the most sig-
nificant l− r bits of the mapped value, and the IDs mapped
to the largest group form a new ID set denoted as S2. Then,
φ̂1(y) is transformed (the detail for the transform will be de-
scribed later) to another polynomial φ1(y) such that φ1(y) is
a perturbation polynomial regarding S2 and r. This process
continues as follows: another polynomial φ̂2(y) is randomly
constructed; it maps all the IDs in S2 into multiple groups;
the IDs mapped to the largest group becomes another new
ID set S3; φ̂2(y) is transformed to polynomial φ2(y) which
is a perturbation polynomial regarding S3 and r. As the
above proceeds, more perturbation polynomials are found
and the set of legitimate IDs shrinks. Suppose the process
stops after the nth step. Then, Sn becomes the legitimate
ID set and all the perturbation polynomials generated so far
form the set of polynomials regarding Sn and r. A formal
description of the algorithm is presented as follows:

(0) Initializations: i = 1, S = Si = {0, · · · , q − 1}, Φ = ∅.
(1) A t-degree polynomial ĥi(y) is randomly constructed

over Fq .

(2) Based on ĥi(y), Si is divided into w subsets denoted
as Si,0, Si,1, · · · , Si,(w−1), where w = 2l−r , each Si,j

(j = 0, · · · , w − 1) is defined as

{y | ĥi(y) = j ∗ 2r + c, where c ∈ {0, · · · , 2r − 1}}.
As an example, suppose l = 9, q = 457, r = 4, {0, 1} ⊂
Si, ĥi(0) = 131 = 8∗24+4, and ĥi(1) = 50 = 3∗24+2.
According to the rule for set division, 0 ∈ Si,8, 1 ∈ Si,3.

(3) Let Si,k be the largest subset of Si. If | Si,k |< N ,
the algorithm terminates. Otherwise, Step (4) is ex-
ecuted. Note that | Si,k | is checked in this step to
guarantee that the generated ID set contains at least
N (the desired network size) ids.

(4) Let hi(y) = ĥi(y) − k ∗ 2r. Then, for any u ∈ Si,k, we

have hi(y) ∈ {0, · · · , 2r − 1} because ĥi(u) ∈ {k ∗ 2r +
cand c ∈ {0, · · · , 2r − 1}} according to the rule stated
in step (2). Therefore, polynomial hi(y) and ID set
Si,k satisfy the limited infection property; i.e., hi(y) is
a perturbation polynomial regarding Si,k and r. So,
hi(y) is added to the perturbation polynomial set Φ.
Note that the polynomials previously added to Φ are
perturbation polynomials regarding r and Si, which is
a superset of Si,k. So, they must also be perturbation
polynomials regarding r and Si,k.

(5) Let S = Si+1 = Si,k, i = i+1, and repeat steps (1)-(5).



It is easy to see that the constructed S and Φ satisfy re-
quirements (a)-(c). Also, at most q − 1 < 2l polynomial
evaluations are needed for each execution of Step (2), and
Step (1) and Step (3) have lower computation complexity
than Step (2). So the complexity for finding out a perturba-
tion polynomial is O(2l) evaluations of t-degree polynomials.
Note that the algorithm can be run in advance by the offline
authority, which has much more computation power. Table
II shows some examples for setting parameters l, r and m
to construct at least two perturbation polynomials, given
the desired network size. For example, to support a net-
work size of N = 216, the parameters can be set as follows:
q = 240 − 87, l = 40, and r = 28.

5. SECURITY ANALYSIS
After an adversary has compromised nc nodes, denoted as

u1, u2, · · · , unc , and captured the polynomial shares preloaded
to these nodes, the adversary can attack the system based
on the captured shares.

5.1 Breaking fi(x, y) (i = 0, · · · , m − 1)
In the polynomial-based scheme proposed by Blundo et

al. [8], the polynomial used for generating all pairwise keys
can be broken after the number of compromised nodes (nc)
exceeds the degree (t) of the polynomial. Since the RPB
scheme is also polynomial-based, it is important to study
whether the scheme has similar limitations. In RPB, pair-
wise keys are constructed based on multiple polynomials
fi(x, y) (i = 0, · · · , m − 1). An adversary must compromise
all these polynomials in order to break down the system.
Each fi(x, y) is a t-degree bivariate and symmetric polyno-
mial. Recall that the adversary can find out at most one
perturbed share of fi(x, y), i.e., guk,i(y), from each com-
promised node uk. Therefore, the adversary cannot break
fi(x, y) if nc ≤ t. In the following, we only consider the case
that nc ≥ t + 1.

Lemma 1. The probability for the adversary to break any
f(x, y) ∈ {fi(x, y) | i = 0, · · · , m − 1} in one attempt is

1
|Φ|t+1 .

Proof. (sketch) Because guk(y) = f(uk, y) + φuk(y), we
obtain a system of linear equations as follows:

tX

i=0

(uk)i ·Ai,j +Bk,j = Dk,j , j = 0, · · · , t and k = 1, · · · , nc.

(3)
where,

• f(x, y) =
P

0≤i,j≤t Ai,jx
iyj . Each Ai,j is unknown

and Ai,j = Aj,i. So the number of unknowns in f(x, y)
is (t + 1) ∗ t/2.

• φuk(y) =
Pt

j=0 Bk,jy
j , and each Bk,j is unknown.

• guk(y) =
Pt

j=0 Dk,jy
j , and each Dk,j is known.

In linear system (3), the total number of linear equations
(i.e., nc ∗ (t + 1)) is less than the total number of unknowns
(i.e., nc ∗(t+1)+(t+1)∗ t/2). So, a unique solution for Ai,j

(0 ≤ i, j ≤ t) cannot be found if the number of unknowns is
not reduced.

Due to the arbitrariness in constructing polynomial f(x, y),
any two Ai0,j0 and Ai1,j1 (i0 �= j1 or j0 �= i1) are inde-
pendent. So, the number of distinct Ai,j is (t + 1) ∗ t/2
and cannot be reduced. However, if the adversary knows
that the same perturbation polynomial is preloaded to a
group of nodes (e.g., u0, · · · , uw, without loss of generality),
i.e., φu0(y) ≡ · · · ≡ φuw(y), then B0,j = · · · = Bw,j for
j = 0, · · · , t. In this case the number of unknowns in linear
system (3) is reduced by w ∗ (t + 1); i.e., the number of dis-
tinct 〈Bi,0, · · · , Bi,t〉 (i = 1, · · · , nc) is reduced by w. In the

following, we denote 〈Bi,0, · · · , Bi,t〉 as B̂i. Furthermore,

only when the number of distinct B̂i is reduced by (t + 1),
can the unique solution to Ai,j (0 ≤ i, j ≤ t) in system (3)
be found. This can be achieved by identifying one or more
groups of nodes such that the nodes in the same group are
preloaded with the same perturbation polynomial.

Next, we study the probability for the adversary to cor-
rectly group nodes based on the perturbation polynomials
preloaded to them. Recall that in the RPB scheme: (a) The
polynomial share preloaded to each node is perturbed with
a perturbation polynomial randomly picked from Φ. That
is, each node has the same probability to have its share per-
turbed by any perturbation polynomials. (b) For any two
nodes, they cannot find out whether they are preloaded with
the same perturbation. Considering two arbitrary nodes
u0 and u1, gu0(u1) − gu1(u0) = (f(u0, u1) − f(u1, u0)) +
(φu0(u1)−φu1(u0)) = φu0(u1)−φu1(u0). Because {φu0(u1),
φu1(u0)} ⊂ {0, · · · , 2r − 1}, φu0(u1) − φu1(u0) can be any
element in {0, · · · , 2r − 1}S{q − (2r − 1), q − 1}, no matter
φu0(y) and φu1(y) are the same or not. Note that φu0(y) ≡
φu1(y) does not imply that φu0(u1) = φu1(u0). Due to the
above reasons, the adversary has to guess (without any other
knowledge) whether a group of nodes are preloaded with the
same perturbation polynomial.

Let us suppose the adversary guesses that nodes u0, · · · , uw

are preloaded with the same perturbation polynomial. Be-
cause the number of perturbation polynomials is | Φ |, the
content of 〈φu0(y), · · · , φuw (y)〉 has | Φ |w+1 possibilities,
among which the number of cases that φu0(y) ≡ · · · ≡
φuw (y) is | Φ |. So, the probability that this grouping is

correct is 1
|Φ|w .To reduce the number of distinct B̂i (i =

1, · · · , nc), multiple groups may need to be identified. As-
sume that Ng groups are identified, each group i has Si

nodes. Note that by putting Si nodes into a group, the
number of the distinct B̂i is reduced by Si − 1. To break

f(x, y), it must hold that
PNg

i=1(Si−1) ≥ (t+1), and hence,
the probability of correctly identifying these groups (i.e.,

1
QNg

i=1|Φ|Si−1
= ( 1

|Φ| )
PNg

i=1(Si−1) ≤ 1
|Φ|t+1 ) is also the proba-

bility for break f(x, y) in one attempt.

After an unsuccessful attempt, the adversary can keep
on attacking until the polynomial is broken. The expected
number of such attempts is Ω(| Φ |t+1). Because all these
f0(x, y), · · · , fm−1(x, y) are independently constructed, we
have

Theorem 2. The computational complexity for breaking
{fi(x, y) | i = 0, · · · , m − 1} is Ω(m∗ | Φ |t+1).

Table 2 shows some numeric results of security analysis.
For example, let us assume the desired network size (N) is



Table 2: Security Level and Supportable Network
Size with Various Parameters [Desired key size (L)
is 80 bits; BC: Breaking Complexity; N: Supportable
Network Size]

q l r m t | Φ | BC N

232 − 5 32 22 8 ≥ 76 2 > 280 212

236 − 5 36 24 7 ≥ 77 2 > 280 212

240 − 87 40 26 6 ≥ 77 2 > 280 212

240 − 87 40 28 7 ≥ 77 2 > 280 216

212 and the desired key size is L = 80 bits. Suppose the
offline authority sets q = 232 −5, l = 32, t = 76, and r = 22.
According to the algorithm for constructing node ID set and
perturbation polynomials, | Φ |= 2. Also, m = 	 L

l−r

 = 8.

So, the complexity for breaking fi(x, y) (i = 0, · · · , m − 1)
is no lower than 8 ∗ 277 = 280.

5.2 Compromising A Partial Set of Pairwise
Keys

We have shown that, if the system parameters are chosen
appropriately, an adversary has prohibitively high complex-
ity to break fi(x, y) (i = 0, · · · , m−1) to compromise all the
pairwise keys. However, the adversary may attempt to com-
promise part of the pairwise keys. For example, it may try
to break the polynomial shares associated with a particular
non-compromised node v, i.e., fi(v, y) (i = 0, · · · , m − 1).

First, we analyze the complexity to break a certain f(v, y) ∈
{fi(v, y) | i = 0, · · · , m − 1}. From each compromised node
uk (k = 1, · · · , nc), polynomial share guk(y) is captured,
and thus guk(v) is known by the adversary. Also since
guk(v) = f(uk, v) + φuk(v), it can construct the following
system of linear equations:

tX

i=0

ui
kAi + Bk = Dk, k = 1, · · · , nc, (4)

where,

• f(v, y) =
P

0≤i≤t Aix
i, and each Ai is unknown.

• Bk = φuk(v), and each Bk is unknown.

• Dk = guk(v), and each Dk is known.

Here, the number of equations is nc and the number of un-
knowns is (t + 1) + nc. Similar to the proof of Lemma 1,
f(v, y) can be broken only if the number of unknowns can
be reduced by identifying the nodes that are preloaded with
the same perturbation polynomials. Also, the probability for
successfully grouping the nodes (based on the preloaded per-
turbation polynomials) is no higher than 1

|Φ|t+1 . Therefore,

the computational complexity for breaking f(v, y) is Ω(|
Φ |t+1), and the complexity to break fi(v, y), i = 0, · · · , m−
1, is Ω(m∗ | Φ |t+1).

5.3 Other Attacks
The simplest attack to break the pairwise key shared by

two non-compromised nodes is to directly guess the key.
Since each bit of the key can be 1 or 0 with the same prob-
ability, the probability for correctly guessing the key in one
attempt is 1

2L , and the computational complexity for find-

ing out the key is Ω(2L). Therefore, as long as the size of

a key is large enough (e.g., 80 bits), the time complexity is
prohibitively high.

Recall that in the course of key establishment, when the
sender or the receiver finds a key fragment Ku,v be 0, it
changes it to the most significant l−r bits of q−1. This may
be utilized by the adversary, who always guess each key frag-
ment to be the most significant l− r bits of q − 1. However,
this does not significantly improve effectiveness of the attack
due to the following reasons: In practice, q > 2l − 2r (for
example, in our experiments q = 232−5, r = 24 when l = 32,
and q = 240 − 87, r = 26 when l = 40), and hence the most
significant l− r bits of q−1 is equal to 2l−r −1. Thus, Ku,v

can be any integer between 0 and 2l−r−1, and it is uniformly
distributed in {0, · · · , 2l−r − 1} due to the arbitrariness in
constructing polynomials fi(x, y) (i = 0, · · · , m−1) and the
perturbation polynomials. If the adversary guesses each key
fragment Ku,v to be the most significant l − r bits of q − 1,
the probability of successfully guessing the key fragment is

1
2l−r ∗ 2. Therefore, the complexity to successfully guess the

whole key is Ω(2(l−r−1)∗m), which is still on the same order

as Ω(2L) because 2L = 2(l−r)∗m and m is typically small.
By eavesdropping, an adversary may find out know the set

of legitimate node IDs (S). Then, it may attempt to find
out all possible perturbation polynomials. This attack, how-
ever, does not work because in our RPB scheme because the
authority constructs the perturbation polynomial set in a
random way. To find out the perturbation polynomials, the
adversary has to check each n-degree (n ≤ t) polynomial,
and evaluate it for each legitimate ID. The required com-
putational complexity is equivalent to evaluating 2(t+1)×l

polynomials. As long as t and l are appropriately selected,
e.g., t = 80 and l = 40, the number is as high as 2360, which
makes the attack infeasible.

The adversary may attempt to disrupt the PKE process
by randomly generating a hash value other than the one
sent by the sender. If the hash value is the same as any of
the valid 3m − 1 ones other than the one specified by the
sender, the receiver will generate a different pairwise key.
The probability of success is (3m − 1)/2L, which is very
small because m is small, for example, 6 or 7.

6. IMPLEMENTATION AND EVALUATION
We have implemented a prototype of the RPB scheme on

the 8-bit, 7.37-MHz MICA2 mote [25] running TinyOS [29].
The implementation uses the RC5 function of TinySEC [27]
as the secure hash function. The system parameters q, l, r,
t and m can be tuned to achieve the desired size of pairwise
keys (L), the desired size of networks (N) and the desired
level of security. In the following, we presents the experi-
ments that we have conducted to evaluate the performance
of RPB.

6.1 Experiment Setup
The parameters we use for evaluating the RPB scheme are

shown in Table 3. In these settings, a network with N = 212

Table 3: Parameters of RPB in the Experiments
q l r t m
232 − 5 32 22 80 8
236 − 5 36 24 80 7
240 − 87 40 28 or 26 80 7 or 6



or 216 nodes can be supported, the size of generated pairwise
key is 84 bits, and the computational complexity to break
the secret polynomials for key generation in this system is
at least 2t = 280 according to the analysis in Section 5.

The RPB scheme has very low communication overhead:
only a hash value of the pairwise key needs to be sent be-
tween two nodes. This value can be piggybacked in the first
data message they exchange. Therefore, in the experiments
we only study the computational overhead and the storage
overhead of the sensor nodes. Note that the overhead of the
offline key server is not considered since the server can be
much more powerful than sensor nodes.

Two metrics are used in our experiments: (a) The com-
putational overhead per node — the total number of CPU
cycles and the CPU running time that are required to find a
shared key divided by the number of communicating nodes.
In particular, the reported computational overhead for RPB
is the overhead of the receiver side because the sender has
lower computational overhead than the receiver. (b) The
storage overhead — the size of the program and data in
ROM and RAM.

We use the tools provided by Shnayder et al. [30] for count-
ing CPU cycles. To focus on the effectiveness of the key
establishment schemes with regard to the two metrics, we
only use two communicating nodes in our experiments.

6.2 Experiment Results
We now present the experiment results. Note that all

the data presented in the figures or tables are the averaged
results over 100 independent runs.

6.2.1 Computational Overhead

Table 4: Computational Overhead of RPB
Scheme Time (in seconds) Cycle Count

RPB 0.13 9.59 ∗ 105

Table 4 shows the computational overhead of RPB and
other two schemes in terms of CPU cycles and CPU run-
ning time required for establishing a pairwise key. Here, the
parameters for RPB are as follows: q = 240 − 87, l = 40,
r = 28, t = 80 and m = 7. Therefore, pairwise keys of size
(l − r) ∗ m = 84 bits can be computed.

6.2.2 Storage Overhead

Table 5: Storage Overhead of RPB (in Byte)
Full program

(Comm. + RPB)
Comm.
module

RPB

ROM 22,302 (code) 10, 130 12,170 (code)
+2,835 (data) +2,835 (data)

RAM 714 389 325

For running key establishment schemes, each sensor node
needs memory space for holding program code and data such
as the coefficients of polynomials in RPB. The program and
data are initially uploaded into the EPROM, and they will
then be loaded into its RAM for computing pairwise keys.
We develop a standalone program for testing RPB. In this
program, one mote computes a pairwise key and sends it
to another mote. The receiver computes candidate pairwise
keys and finds out the one matching the key sent by the

sender. We measure the ROM and RAM consumption of
RPB, and the results are shown in Table 5. Considering the
sizes of RAM and ROM in MICA2 are 4KB and 128KB,
the space requirements of about 0.33KB RAM and about
15KB ROM are affordable.

7. CONCLUSIONS
In this paper, we proposed a novel random perturbation-

based scheme, which utilizes random perturbation polyno-
mials to guarantee that any two nodes can directly compute
and agree on a pairwise key; at the same time, any number of
compromised colluding nodes have negligible probability to
break the pairwise key shared by a pair of non-compromised
nodes. Through analysis and prototype implementation, we
showed that the scheme is highly secure and computation-
ally efficient. Furthermore, it has pretty low storage require-
ment, and can be implemented in the current generation of
sensor nodes.
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Appendix A: Proof of Theorem 1.
Let f(u, v) = f(v, u) = A, φu(v) = B0, φv(u) = B1, and C
be the most significant l − r bits of A. Regarding the range
of A, there are three cases as follows:
Case 1: A ∈ {2r , · · · , (q − 1) − (2r − 1)}.

Since B0 ∈ {0, · · · , 2r − 1} and B1 ∈ {0, · · · , 2r − 1},
gu(v) = A + B0 ∈ {2r, · · · , q − 1} and gv(u) = A + B1 ∈
{2r , · · · , q−1}. Note that the additions in this proof are not
modular additions unless particularly mentioned. Regarding
whether each addition produces a carry from bit r−1 to bit
r, there are four sub-cases as follows:

• Case 1.1: neither A + B0 or A + B1 produces a carry
from bit r−1 to bit r. B0 and B1 do not affect the most
significant l−r bits of A+B0 or A+B1. Therefore, the
most significant l − r bits of these two are determined
solely by A and hence are the same. That is, Ku,v =
C = Kv,u.

• Case 1.2: only A+B0 produces a carry from bit r−1
to bit r. In this case, Ku,v = C + 1 in node u. As for

node v, Kv,u = C since there is no carry from bit r− 1
to r in A + B1. Therefore, K+

v,u = C + 1 = Ku,v.

• Case 1.3: only A+B1 produces a carry from bit r−1
to bit r. In this case, Ku,v = C since A + B0 does
not produce a carry from bit r − 1 to r; in node v,
Kv,u = C + 1. Therefore, K−

v,u = C = Ku,v.

• Case 1.4: both of them produce a carry from bit r−1
to bit r. In this case, Ku,v = C + 1 at node u and
Kv,u = C + 1 at node v. So, Ku,v = C + 1 = Kv,u.

Case 2: A ∈ {q − (2r − 1), q − 1}.
Regarding whether the addition results, i.e., A + B0 and

A + B1, are greater than q − 1, there are four cases:

• Case 2.1: A + B0 ≤ q − 1 and A + B1 ≤ q − 1.

This is the same as Case 1. Therefore, a match can be
found.

• Case 2.2: A+B0 ≥ q and A+B1 ≤ q− 1. At node u,
since A + B0 ∈ {q, · · · , q − 1 + (2r − 1)}, gu(v) = (A +
B0 mod q) ∈ {0, · · · , 2r − 2}. So, the most significant
l − r bits of gu(v) is 0. At node v, A + B1 ∈ {q − (2r −
1), · · · , q−1}. Thus, A+B1+2r ∈ {q+1, · · · , q+2r−1}.
Therefore, (gv(u)+2r mod q) = (A+B1+2r mod q) ∈
{1, · · · , 2r − 1}. That is, the most significant l − r bits
of (gv(u) + 2r mod q) is also 0. So, K+

v,u = Ku,v.

• Case 2.3: A+B0 ≤ q−1 and A+B1 ≥ q. In this case,
B0 < B1. Also due to {B0, B1} ⊂ {0, · · · , 2r − 1}, it
holds that B1−2r < B0. Thus, A+B1−2r < A+B0 ≤
q−1 < A+B1. At node u, gu(v) = A+B0 ∈ {q−(2r −
1), · · · , q−1}. So, Ku,v is the most significant l−r bits
of A+B0, and Ku,v must be the same as either the most
significant l−r bits of A+B1 −2r or those of q−1. At
node v, since A+B1 ∈ {q, · · · , q−1+(2r −1)}, it holds
that gv(u) = (A+B1 mod q) ∈ {0, · · · , 2r −2}. So, the
most significant l−r bits of gv(u) is 0. According to the
algorithm, Kv,u is set to be the most significant l − r
bits of q − 1, K−

v,u be the most significant l − r bits of
gu(v)−2r mod q = A+B1−2. Therefore, Ku,v = Kv,u

or Ku,v = K−
v,u.

• Case 2.4: A + B0 ≥ q and A + B1 ≥ q. gu(v) =
(A + B0 mod q) ∈ {0, · · · , 2r − 1} and gv(u) = (A +
B1 mod q) ∈ {0, · · · , 2r − 1}. So, the most significant
l − r bits of both gu(v) and gv(u) are 0, and thus,
according to the algorithm, Ku,v = Kv,u.

Case 3: A ∈ {0, · · · , 2r − 1}.
gu(v) = A+B0 ∈ {0, · · · , 2r+1−2} and gv(u) = A+B1 ∈

{0, · · · , 2r+1 − 2}. That is, the most significant l − r bits of
gu(v) and gv(u) can only be either 0 or 1. Therefore, Ku,v

can be either 1 or the most significant l− r bits of q− 1. As
for node v, there are two sub-cases:

• Case 3.1: The most significant l− r bits of gv(u) is 0.
Then, Kv,u is equal to the most significant l− r bits of
q − 1 and K+

v,u = 1. So, it holds that Kv,u = Ku,v or
K+

v,u = Ku,v.

• Case 3.2: The most significant l− r bits of gv(u) is 1.
Then, Kv,u = 1. On the other hand, the l − r bits of
gv(u)− 2r mod q must be 0, and thus K−

v,u is the most
significant l − r bits of q − 1. Therefore, it holds that
Kv,u = Ku,v or K−

v,u = Ku,v.


