
Wireless Netw (2007) 13:583–595

DOI 10.1007/s11276-006-6254-6

Dynamic proxy tree-based data dissemination schemes
for wireless sensor networks
Wensheng Zhang · Guohong Cao · Tom La Porta

Published online: 8 May 2006
C© Springer Science + Business Media, LLC 2006

Abstract In wireless sensor networks, efficiently dissemi-

nating data from a dynamic source to multiple mobile sinks

is important for the applications such as mobile target de-

tection and tracking. The tree-based multicasting scheme

can be used. However, because of the short communication

range of each sensor node and the frequent movement of

sources and sinks, a sink may fail to receive data due to

broken paths, and the tree should be frequently reconfig-

ured to reconnect sources and sinks. To address the problem,

we propose a dynamic proxy tree-based framework in this

paper. A big challenge in implementing the framework is

how to efficiently reconfigure the proxy tree as sources and

sinks change. We model the problem as on-line constructing

a minimum Steiner tree in an Euclidean plane, and propose

centralized schemes to solve it. Considering the strict energy

constraints in wireless sensor networks, we further propose

two distributed on-line schemes, the shortest path-based (SP)
scheme and the spanning range-based (SR) scheme. Exten-

sive simulations are conducted to evaluate the schemes. The

results show that the distributed schemes have similar per-

formance as the centralized ones, and among the distributed

schemes, the SR scheme outperforms the SP scheme.
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1. Introduction

A wireless sensor network [1] consists of many tiny and

inexpensive sensor nodes that are distributed over a vast

field to obtain sensing data. These nodes are capable of

not only measuring real world phenomena, but also storing,

processing and transferring these measurements. Due to the

above-mentioned attractive characteristics, sensor networks

are adopted in many military and civil applications such as

battlefield surveillance, environmental control, and security

management. In these applications, sensing data often need

to be disseminated from a source to multiple sinks, where

the source and the sinks may frequently move. For example,

a sensor network may be deployed in a battlefield to detect

and monitor the enemy tanks and soldiers. When a target of

interest is detected, the sensing data about the target should

be sent to commanders and soldiers moving in the battlefield.

In recent years, many data dissemination schemes [2–8]

have been proposed for sensor networks, but most of them

cannot efficiently support multicasting from a dynamic

source to multiple mobile sinks. For example, the exter-

nal storage-based scheme [2], the data-centric storage-based

(DCS) scheme [5] and the index-based scheme [8] only con-

sider the point-to-point communication between a pair of

source and sink. The directed diffusion scheme [3] and the

two-tier data dissemination (TTDD) scheme [4] naturally

support data multicasting, but they are not efficient when

the source and the sinks are mobile. In the directed diffusion

scheme, sinks need to flood their interests over the whole net-

work, and then the sources matching the interests send their

data to the sinks via multiple paths. When the network is large

and/or the sinks change frequently, the flooding of interests

will cause large overhead. The TTDD scheme proactively

maintains a grid-based propagation structure over the whole

network regardless of the actual locations of the sinks, and
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the structure should be updated whenever the source location

changes, which may also cause large maintenance overhead.

To avoid unnecessarily flooding information [3] or ex-

panding propagation structure over the whole network [4],

we may use a tree-based multicasting scheme. In this scheme,

the source and the sinks form a tree rooted at the source, and

the source pushes data to the sinks along the tree branches.

However, due to the short communication range of each sen-

sor node and the frequent movement of sources and sinks, a

sink may frequently fail to receive data due to broken paths,

and the tree should be frequently reconfigured to reconnect

sources and sinks. To address the problems, we propose a

dynamic proxy tree-based framework. In this framework,

each source (sink) is associated with a stationary sensor node

called source (sink) proxy. The proxies related to the same

source form a proxy tree. Facilitated by the tree, a source

can push data to its proxy, which further pushes the data to

multiple sink proxies, and a sink can query its proxy to get

the data.

As a source changes or a sink moves, the associated proxy

should be changed to reduce the cost of pushing (querying)

data to (from) the proxy. Accordingly, the tree should also

be reconfigured to reduce the cost of multicasting data from

the source proxy to the sink proxies. Due to the strict energy

constraints in sensor networks, tree reconfiguration should

be conducted in an energy efficient way. Many multicas-

ting tree reconfiguration schemes have been proposed for

the existing wired and wireless networks such as the Inter-

net, the cellular network and the wireless ad hoc network.

However, these schemes can not be directly applied to the

wireless sensor network due to their large overhead. For ex-

ample, in the rearrangeable inexpensive edge-based on-line
Steiner (ARIES) algorithm [9], a new node joins an existing

tree via the shortest path, and the subtrees including newly

added or deleted nodes are reconfigured every certain time.

This algorithm requires each multicasting member to know

its distance to other members. It is feasible for the Internet

and the cellular network, in which each router (base station)

can naturally obtain the information through the underlying

topology advertisement protocol (e.g., OSPF). However, it is

not applicable in sensor networks, where running the topol-

ogy advertisement protocol may cause large overhead. On

the other hand, the multicasting protocols [10–12] for mo-

bile ad hoc networks emphasize more on route robustness

and pay less attention to energy efficiency, because mobile

ad hoc networks have frequent path breaks due to high node

mobility.

In this paper, we first formalize the tree reconfiguration

problem as an on-line Euclidean Steiner problem [13], and

present several centralized schemes to solve the problem.

Considering the strict energy constraints and the locality

requirements in wireless sensor networks, we propose two

distributed heuristic-based schemes, the shortest path-based

(SP) scheme and the spanning range-based (SR) scheme.

These schemes are motivated by the following observations:

First, the new proxy of a source (sink) can utilize the in-

formation provided by the previous proxy to efficiently join

the tree. Second, localized adjustments can be conducted at

individual nodes to gradually optimize the tree structure. In

the SP scheme, when a sink (source) changes its proxy, the

new proxy uses flooding to discover a parent node and joins

the tree; the proxy changes cause the tree nodes to gradu-

ally adjust their locations in a localized way. The SP scheme,

however, still has large overhead due to flooding, especially

when the tree nodes are far away from each other. So we

propose the SR scheme, in which each subtree is associated

with a certain spanning range, which is dynamically assigned

and adjusted. Using fewer messages, a new proxy can find

the root of the smallest subtree whose spanning range covers

itself, and joins the subtree.

We use extensive simulations to compare the proposed

schemes in terms of data dissemination cost and tree recon-

figuration overhead. The results show that the centralized

schemes slightly outperforms the distributed schemes, and

the SR scheme outperforms the SP scheme.

The rest of the paper is organized as follows: Section 2 de-

scribes the system model and the dynamic tree-based frame-

work. Section 3 proposes centralized schemes for tree recon-

figuration. The distributed schemes are presented in Section

4. Section 5 reports the performance evaluation results. Sec-

tion 6 compares our schemes with related work. Section 7

discusses the load balance and fault tolerance issues. Section

8 concludes the paper.

2. Preliminaries

2.1. Assumptions

We consider a wireless sensor network consisting of many

stationary sensor nodes. These nodes are densely deployed

over a vast field to detect and continuously monitor some

mobile targets. The network is connected, and the field can

be completely sensed. Each sensor node knows its own loca-

tion through GPS [14] or other inexpensive techniques such

as triangulation [15]. We also assume that, using these tech-

niques, the localization error is not obvious and will not affect

our schemes significantly. Based on the location information,

some location-based routing protocols (such as GPSR [16])

can be used for multi-hop communication between sensor

nodes.

When a mobile target of interest appears in the sensing

field, the sensor nodes surrounding it can detect it. A leader

node (source) among them periodically generates sensing

data about the target, based on its own detection [17] or the

readings of multiple detecting nodes [18]. As the target moves
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away from its current source, the source is changed to be

another node closer to the target.

Some mobile hosts (e.g., PDAs) are moving within the

sensing field. Each mobile host can register to a source and

receive sensing data from the source. A mobile host can di-

rectly communicate with a sensor node if it is within the

transmission range of the node. For simplicity, we do not

consider the communication between the mobile hosts.

2.2. Matching sinks and sources

When a sink wants to receive sensing data about some tar-

get, it must register to the source that detecting the target. To

facilitate a sink to find a source of interest, the index-based

scheme proposed in [8] is adopted. In this scheme, some in-

dex nodes maintain the locations of sources, and a sink can

query the appropriate index nodes to get the location of a

source. When a source is changed, its location is updated at

the related index nodes, such that the sinks can still find it.

Specifically, the index nodes associated with a certain target

type (say, type a) are nodes surrounding the location com-

puted by Hash(a), where Hash(.) is a public hash function.

Therefore, a new source node can find out the index node of

the target that it detects. Similarly, a sink can also find out the

index node associated with the target of interest, and hence

find out the corresponding source node. More details about

the scheme are available in [8].

2.3. Dynamic proxy tree-based framework

Due to the dynamic characteristics of sources and sinks, it is

difficult to maintain a tree directly connecting a source and

multiple sinks that are interested in the source, or dissemi-

nate data directly from the source to the sinks. To deal with

the problem, we propose a proxy tree-based framework. In

the framework, as shown in Fig. 1, a source (sink) is associ-

ated with a stationary sensor node called source (sink) proxy.

As the location of the source (sink) changes, its proxy does

not change until its distance to the source exceeds a certain

threshold. A source proxy and the proxies of the sinks that

Fig. 1 Using proxy tree to support dynamic multicasting

need to frequently query the source form a proxy tree. Facili-

tated by the tree, sensing data is periodically pushed from the

source to its proxy, and then is multicast to sink proxies in the

tree. Each sink can query data from its proxy. The change of

a source (sink) proxy may cause the proxy tree to be recon-

figured to reduce the cost for pushing data from the source

proxy to the sink proxies and from sink proxies to sinks. In

the remaining of the paper, we focus on efficiently reconfig-

uring the proxy tree to minimize the data dissemination cost

and the tree reconfiguration overhead.

3. Centralized tree construction and
reconfiguration schemes

In this section, we study the tree construction and reconfig-

uration problem under an ideal assumption that there exists

a centralized point that has the knowledge of the whole net-

work and can direct sensor nodes to construct or reconfigure

a tree.

3.1. An off-line scheme

Given the topology of a sensor network and a set of sink

(source) proxies, the problem of forming a minimum-cost

proxy tree can be formalized as constructing a minimum
Steiner tree [19] that connects the set of sink (source) proxies

and may include some other nodes (called Steiner nodes) in

the network. Due to dense deployment of sensor nodes, the

problem can be further formulated as constructing a mini-

mum Steiner tree in an Euclidean plane. In this section, we

describe a centralized off-line scheme and several centralize

on-line schemes to address the problem.

Constructing a Steiner minimum tree is known as NP-

hard [20], and the exact solution has very high computational

complexity. Therefore, some heuristic-based solutions have

been proposed to solve the problem. For example, Smith et al.
[21] proposed an algorithm, in which a minimum spanning

tree connecting a given set of terminals is first constructed,

and then the tree is optimized to approach a minimum Steiner

tree. Following the idea, we present an off-line scheme for

constructing an approximate minimum-cost proxy tree.

The scheme makes use of the observation that a minimum

Steiner tree (minimum-cost proxy tree) is a union of full
Steiner trees (FSTs), and each FST is a tree with the following

properties:

� It spans k (k > 1) terminals (proxies) and has k − 2 Steiner

points.� Each Steiner point has three edges making 120◦ with each

other, and every proxy in the FST has degree one.
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Fig. 2 An illustration of the
off-line scheme

Based on the above observation, a minimum-cost proxy tree

can be structured in two steps: First, a minimum spanning

tree (denoted as T ) including all the proxies is constructed;

second, T is reconfigured to be a set of FSTs. The Kruskal’s
algorithm [22] can be used to construct T . The procedure

for reconfiguring T is described as follows, and it is further

illustrated by Fig. 2.

1. T is decomposed into multiple components, each with

i (i = 2, 3, . . . , m) proxies, where a 2-proxy component

is an edge of T , and an i-proxy (i > 2) component is

a corner that has (i − 1) edges. To further explain the

decomposition process, we show an example in Fig. 2,

where A is a source proxy and B − D are sink proxies.

The minimum spanning tree is shown in Fig. 2(a). In this

tree, the 2-proxy components include edges AB, BC , C D
and DE ; the 3-proxy components include triangles ABC ,

BC D and C DE .

2. For each i-proxy component Ti , a FST (denoted as

F ST (Ti )) is constructed if it exists. If there is no sensor

node located at the calculated position of a Steiner point,

the sensor node closest to the Steiner point is picked. In

this case, the constructed FST is not the actual FST. Note

that, this is different from Smith et al.’s algorithm [21],

where the actual FST can always be constructed. The gen-

erated FSTs are placed in a priority queue Q accordingly

to the value of

| F ST (Ti ) | / | Ti | .

All edges of Ti are also appended to Q. Considering the ex-

ample shown in Fig. 2, for the 3-proxy component ABC ,

FST (S1 A, S1 B, S1C) (where S1 is the root, and A, B and

C are leaves) is generated; for component BC D, there is

no FST since ∠BC D > 120◦; for component C DE , FST

(S2C, S2 D, S2 E) is generated.

3. An approximated minimum-cost proxy tree is constructed

by picking FSTs from Q in the same way as the Kruskal’s

algorithm. Considering the example in Fig. 2 again, the

resulted Steiner tree is shown in Fig. 2(b).

3.2. On-line schemes

When a sink joins (leaves) a multicasting group, or moves

far away from its current proxy, the proxy set has to change

by adding (removing) a proxy, and the tree should also be

reconfigured to reduce the data dissemination cost. Since

it is too expensive to completely reconstruct the tree after

each membership change, we borrow the idea of ARIES [9]

and propose an approximated on-line minimum Steiner tree
(ONMST) scheme.

In ARIES, as nodes are added and deleted, a rearrange-

ment of the multicast tree is triggered within a subtree that

is affected by the changes. Following this idea, as proxies

join and leave, the ONMST scheme rearrange the subtrees

affected by the changes. Specifically, a new proxy (denoted

as Pn) is added to the current proxy tree in two steps: first, Pn

is added to the current tree via the shortest path that connects

the tree and Pn; second, a small subtree that contains Pn is

optimized based on the locality property of the Voronoi dia-

gram [19]. The procedure is described in the following and

illustrated in Fig. 3.

1. The current proxy tree (denoted as Tc) is divided into

multiple Voronoi cells, as shown in Fig. 3(a).

2. Suppose Pn is covered by the Voronoi cell of node Pi . We

construct a node set Y which includes Pn and each node

that is either a vertex of the Voronoi cell or a neighbor

of a vertex of the cell. In the example shown by Fig. 3,

Y = {Pn, Pi , Pj , Pk}.
3. In the subgraph (denoted as Gs) of Tc which contains

nodes in Y , the off-line scheme presented in Section 3.1

is used to construct one or more approximated Steiner

trees. Note that, in the tree(s), a pair of nodes is connected

if and only if they are connected in Tc (except that Pn is
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Fig. 3 Illustration of the on-line scheme

connected with Pi ). The reconfigured subgraph is denoted

as G ′
s .

4. Tc is replaced by a new tree T ′
c , which is obtained by

replacing Gs with G ′
s . Considering the example shown by

Fig. 3, the new tree is shown in Fig. 3(b).

When a proxy should leave the current tree, it is removed

only if it is a leaf.

The ONMST scheme can be further optimized by letting

each Steiner node (denoted as Pi ) on the tree to adjust its

location every certain time interval. Let Y denote a node set

containing the neighbors of Pi . A FST that consists of the

nodes in Y is computed, and Pi is replaced by the newly

introduced Steiner nodes in the FST. In the following, we

call the enhanced ONMST scheme E-ONMST.

4. Distributed tree reconfiguration schemes

Even though the ONMST scheme and the E-ONMST scheme

have lower complexity than the off-line scheme, they may

not be suitable for sensor networks due to the following rea-

sons: Each sensor node has only partial knowledge of the

multicasting group; i.e., it only knows its neighbors in the

tree. When a proxy changes from one node to another, re-

quiring the new proxy or its neighbor to collect necessary

information to construct Voronoi diagram and reconfigure

the subgraph surrounding itself may incur large overhead. To

address the problem, we propose two distributed heuristic-

based schemes in this section.

In each distributed scheme, a proxy tree includes only a

source proxy node at the beginning. When a sink wants to

receive data from a source, it registers to the source. To do

this, it picks a sink proxy and then the sink proxy joins the

proxy tree rooted at the proxy of the source. During this

process, the index nodes and the source proxy node must be

contacted. Note that other events are all handled in distributed

manners.

4.1. Shortest path-based (SP) scheme

The SP scheme is based on the heuristic that a new proxy

(Pn) should join the current proxy tree by attaching to the

tree node (Pi ) that has the shortest distance to it. Pi then

conducts localized reconfigurations within the subtree con-

taining itself and its neighbors. Also, each node periodically

conduct localized reconfiguration to gradually optimize the

tree.

4.1.1. Proxy join and leave

In the beginning, a proxy tree includes only a source proxy

node. When a sink wants to join the proxy tree, it selects a

nearby sensor node (Pn) as its proxy. Pn joins the tree by

going through the following three steps.

Step 1: Pre-searching. Pn obtains the location of the current

source proxy (root) from the appropriate index nodes (refer

to Section 2), and then sends a join req to the root. On re-

ceiving the request, as shown in Fig. 4 (a), the root forwards

the request to the neighbor closest to Pn . The forwarding

procedure continues, until it reaches the node (Pj ) which

is closer to Pn than any neighbor, and a message join rep
is sent from Pj to Pn .

Step 2: Finding the closest node. On receiving the reply, as

shown in Fig. 4(b), Pn floods a message discover within a

circle that is centered at itself and has a radius of dPn ,Pj (i.e.,

the distance between Pn and Pj ). Every node receiving the

discover replies its location to Pn . Based on the replies, Pn

finds the node (Pi ) which is closest to itself, and sends a

confirm message to Pi .

Step 3: Node join. On receiving the confirm message, as

shown in Fig. 4(c), Pi adds in Pn , and reconfigures the

subtree containing itself and its neighbors into a FST.

When Pn wants to leave, and it is a leaf in the tree, as

shown in Fig. 5(a), it leaves the tree and sends a leave req
to its parent. Otherwise, Pn has to stay in the tree and mark
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Fig. 6 Sink (source) movement initiated tree reconfiguration

itself as a Steiner node. On receiving leave req, the parent

node removes Pn . If the parent is a Steiner point and has only

two neighbors in the tree, as shown in Fig. 5 (b), it removes

itself and lets its neighbors directly connect with each other.

4.1.2. Sink (source) movement initiated
tree reconfiguration

As a sink (source) moves and becomes far away from its

proxy, the current proxy (Pn) should be changed to another

node (P ′
n) which is closer to the sink (source). The tree re-

configuration initiated by a proxy change goes through the

following three steps.

Step 1: Establishing a temporary edge. As shown in

Fig. 6(a), P ′
n sends a migrate req to Pn . On receiving the

message, Pn establishes a temporary edge between P ′
n and

its parent (denoted as X ), and leaves the tree.

Step 2: Finding the closest node. As shown in Fig. 6(b),

this step is similar to the Step 2 of the new proxy join-

ing procedure. If the found closest node (Pi ) is not X , P ′
n

tears down the temporary connection with X , and attaches

to Pi .

Step 3: Joining the tree. As shown in Fig. 6(c), this step

is the same as the Step 3 of the new proxy joining

process.

4.1.3. Periodic localized tree reconfiguration

When a proxy moves, as shown in Fig. 6, the subtrees that

it leaves or joins are reconfigured, but the remaining part

of the tree is untouched even after it has been affected by
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the reconfigurations. To address the problem, we propose a

periodic localized tree reconfiguration mechanism. With this

mechanism, each Steiner point node monitors the changes

of its neighbors. Every certain time, it computes the FST of

the subgraph including its neighbors and finds the optimal

location for itself. If the cost difference between transmitting

data via the new FST and via the current subtree exceeds

a certain percentage (α), the node replaces itself with the

node closest to the calculated optimal Steiner point. With the

periodic localized reconfiguration scheme, the tree can be

gradually reconfigured with low cost.

4.2. Spanning range-based (SR) scheme

In the SP scheme, a new proxy needs to flood discover mes-

sages to find its position in the proxy tree. The flooding over-

head can be large, especially when the multicasting members

are far away from each other. To deal with the drawback, we

propose a spanning range-based (SR) scheme. The basic idea

of SR is illustrated in Fig. 7. As shown in Fig. 7(a), each sub-

tree is assigned a certain spanning range, and the nodes in

the subtree tree should be within the range. If a proxy (Pn)

in a subtree (Pi ) is changed to another one (P ′
n), as shown

in Fig. 7(b), P ′
n should leave subtree Pi and join subtree Pj .

During this process, both subtrees should be reconfigured. In

the following, we first present the strategy to assign spanning

ranges, and then present the algorithms for adding (remov-

ing) a proxy and dealing with source (sink) changes.

4.2.1. Spanning range assignment

Let P be the root of the tree, and Pi (i = 0, . . . , m − 1) be the

children of P . As shown in Fig. 8(a), the spanning range for

each Pi is the halfplane that does not cover P and is confined

by the following three lines:� l0
i , which passes Pi and is perpendicular with line P Pi ;� l1
i , which equally divides ∠Pi−1 P Pi ;� l2
i , which equally divides ∠Pi P Pi+1.

Here, Pi−1 (Pi+1) is the anti-clockwise (clockwise) neigh-

boring sibling of Pi .

For a node Pi, j whose parent node is Pi , as shown in

Fig. 8(b), its spanning range is decided as follows:

Case 1: Pi, j is the most anti-clockwise child of Pi (e.g.,
P1,0 in Fig. 8(b)). It is confined by
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spanning range of Pi

P

Pi

Pn

P

Pi

Pn FST

Fig. 9 Adding a new proxy (Pn)

� l0
i, j , which passes Pi, j and is perpendicular with line

Pi Pi, j ;� l1
i, j , which equally divides ∠Pi−1 P Pi ;� l2
i, j , which equally divides ∠Pi, j Pi Pi, j+1.

Case 2: Pi, j is the most clockwise child of Pi (e.g., P1,2 in
Fig. 8(b)). It is confined by� l0

i, j , which is defined before;� l1
i, j , which equally divides ∠Pi, j−1 Pi Pi, j ;� l2
i, j , which equally divides ∠Pi P Pi+1.

Case 3: otherwise (e.g., P1,1 in Fig. 8(b)). It is confined by� l0
i, j , which is defined before;� l1
i, j , which equally divides ∠Pi, j−1 Pi Pi, j ;� l2
i, j , which equally divides ∠Pi, j Pi Pi, j+1.

According to the spanning range assignment rule, each

node on the tree can decide the spanning range of its children,

and send the range to them. To reduce the overhead, the range

information can be piggybacked in data packets sent from the

node to its children.

4.2.2. Node join

When a mobile sink wants to join the multicasting tree, sim-

ilar to the SP scheme, it selects a nearby sensor node Pn as

its proxy and asks Pn to join the tree. Pn obtains the current

location of the source proxy from some appropriate index

nodes, and then sends a join req to the source proxy (P). On

receiving the request, P decides the location of Pn as follows:

(1) P calculates the spanning ranges of its children. If Pn is

covered by the spanning range of a child Pi , P forwards

join req(Pn) to Pi .

(2) Otherwise, P adds Pn as its child. In order to add Pn at

an appropriate position, P first finds a child Pj , such that

∠Pn P Pj is no larger than ∠Pn P Pi (i = 0, . . . , m − 1).

(2.1) If ∠Pn P Pj < 120◦, then a FST for triangle P −
Pn − Pj is calculated and replaces the subgraph

containing P , Pn and Pj .

(2.2) Otherwise, Pn is directly added as a child of P .

On receiving a join req(Pn) forwarded by its parent, Pi

follows the same procedure as its parent to decide whether

to add Pn as its child or to forward the join req to one of

its children. The process continues until Pn joins the tree.

Figure 9 shows an example of adding a new proxy.

4.2.3. Sink movement-triggered tree reconfiguration

As a sink moves and becomes far away from its current

proxy (Pn), Pn should be changed to another node (P ′
n) which

is closer to the sink. To conduct the migration, P ′
n sends a

message migrate req(P ′
n) to Pn . On receiving the message,

Pn removes itself from the tree if it is a leaf, and sends an

add req(P ′
n) to its parent (denoted as Pi ).

When Pi receives the message, it checks if P ′
n is in its

spanning range. If it is still in the range, Pi follows the pro-

cedure of adding a new proxy (as described in Section 4.2.2)

to add P ′
n to the tree rooted at Pi . Otherwise, it sends a mes-

sage add req(P ′
n) to its parent. The process continues until

P ′
n finally joins the tree.

4.2.4. Source movement-triggered tree reconfiguration

When a source becomes far away from its current proxy (P),

P should also be changed to another node (P ′) which is

closer to the source. P ′ becomes the new root of the proxy

tree, and P becomes its child. The change of root causes

the other nodes in the tree to change their spanning ranges,

and the information about the new spanning ranges is passed

from the root to leaves as the sensing data flow. On receiving

its new spanning range, each node Pn checks its children

one by one in a certain order (e.g., clockwise order), and

decides whether the position of a child should be changed.

Specifically, if a child Pn,k becomes outside of the spanning

range of Pn , a message rearrange req(Pn,k) is sent to its
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parent, which decides the new position of Pn,k in the same

way as described in Section 4.2.2. Otherwise, the position of

Pn,k is unchanged.

5. Performance evaluations

We first use MATLAB to simulate the proposed centralized

schemes and the distributed schemes, and compare their per-

formance in terms of the average weight of proxy trees, with-

out considering the tree reconfiguration overhead. After that,

simulations based on NS2 are conducted in more practical

scenarios to evaluate the performance of the proposed dis-

tributed schemes.

5.1. Comparing the centralized and

the distributed schemes

The MATLAB-based simulations are conducted in the fol-

lowing settings: 516 (or 2064) nodes are uniformly dis-

tributed in a 500 × 500m2 (or 1000 × 1000m2) square. One

target and 10 sinks move randomly within the sensing region.

Data are sent from the source (whose location is the same as

the target) to the sinks. The proposed centralized schemes,

ONMST and E-ONMST, and the distributed schemes, SP

and SR, are simulated. We use the sum of the average tree

weight as the metric to compare the performance of these

schemes. In the simulations, each experiment lasts for 300s,

and 60 experiments are conducted for each scheme. The av-

erage results of these experiments are shown in the figures.

As shown in Fig. 10, when the minimum spanning tree

(MST) is used for data dissemination, the formed tree has

the largest average weight. When the ONMST scheme is
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Fig. 10 Comparing the tree weights of different schemes (average ve-
locity = 2.5m/s, localized reconfiguration interval = 1s)

employed, the tree weight can be reduced by about 25%,

since ONMST can select some Steiner points to reduce the

tree weight. The tree weight can be further reduced by about

20% when using the E-ONMST scheme, which can periodi-

cally optimize the tree reconfigured by ONMST. The shortest

path-based (SP) scheme and the spanning range-based (SR)

scheme have about 9% and 12% higher tree weight than the

E-ONMST scheme, respectively, because they use less in-

formation to reconfigure the tree.

5.2. Evaluating the distributed algorithms

5.2.1. Simulation model

In the NS2-based simulations, the IEEE 802.11 MAC layer

protocol and the location-based GPSR routing algorithm are

employed. We uniformly deploy 516 sensor nodes over a

500 × 500m2 field. Each sensor node has a communication

range of 40m. One target and 10 sinks move randomly in

the field, and the way-point model is used to simulate their

movement. As a sink or a source (target) moves 80m away

from its current proxy, the sensor node closest to it is selected

as the new proxy.

We evaluate the following metrics:� Control message complexity: the number of control mes-

sages transmitted in the network.� Data message complexity: the number of data messages

transmitted in the network.� Overall message complexity: the sum of the control mes-

sage complexity and the data message complexity.

In the simulations, each experiment lasts for 300s, and

60 experiments are conducted for each scheme. The average

results of these experiments are shown in the figures.

5.2.2. Comparing SR and SP

Figure 11(a) shows that SR has smaller control message com-

plexity than SP, which is due to the following reasons: As a

sink (source) changes its proxy, SP floods discover messages

within a certain area to let the new proxy join the proxy tree.

After that, the new proxy has to exchange several messages

with the tree nodes within the flooding area to select the ap-

propriate parent node. However, when SR is used, only a few

messages need to be sent, because the new proxy is usually

still within the spanning range of the parent of the previous

proxy. Thus, it can immediately join the subtree rooted at the

parent node. Even if the new proxy is out of the spanning

range, a reconfiguration is conducted in the smallest subtree

that covers the new proxy, and the process will not incur

many control messages.

Figure 11(b) shows that SR has slightly larger data mes-

sage complexity than SP. This phenomenon is consistent to
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Fig. 13 Impact of the localized reconfiguration mechanism (SiMTR = Sink movement-initiated tree reconfiguration)

that shown in Fig. 10, which verifies that the shortest path

heuristic is slightly better than the spanning range heuristic.

However, as shown in Fig. 11(c), SR outperforms SP in terms

of the overall message complexity. Figure 12 demonstrates

the simulation results when the number of sinks is increased

to 20. As we can see, the trend is unchanged.

5.2.3. Impact of the localized reconfiguration (LR)
mechanism

Figure 13(a) shows that using the LR mechanism increases

the control message complexity. Also, the control message

complexity increases as the system parameter α decreases.

This is due to the reason that the localized reconfiguration

is conducted more frequently as α becomes smaller. How-

ever, as shown in Fig. 13(b), using the LR mechanism can

decrease the data message complexity, and the data mes-

sage complexity decreases as the system parameter α de-

creases. When α is very small (e.g., 0.05), decreasing the

parameter does not significantly decrease the data complex-

ity. This is due to the reason that the node density is not

large enough, and hence there may not exist a node at the

optimal location to further minimize the cost when α is too

small. Figure 13(c) shows that, with an appropriate parameter
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Fig. 14 Impact of the SoMTP mechanism (average sink velocity = 5.0 m/s)

α, using the LR mechanism can reduce the overall message

complexity.

5.2.4. Impact of the source movement-initiated tree
reconfiguration (SoMTR) mechanism

Figure 14(a) shows that using the SoMTP mechanism in-

creases the control message complexity, and the complexity

increases as the source velocity increases. This phenomenon

can be explained as follows: As the source moves, the source

proxy changes accordingly. When the SoMTP mechanism is

employed, changing the source proxy causes some nodes to

migrate from one branch to another. To do the reconfigura-

tions, some control messages are exchanged. As the source

velocity increases, the source proxy changes more frequently,

and introduces more control messages.

Figure 14(b) shows that using the SoMTP mechanism can

reduce the data message complexity. This can be explained

as follows. If the SoMTP mechanism is not used, the tree

is not reconfigured as the source proxy changes. Thus, data

should be transmitted from the source to the previous proxy

(root) before being transmitted to the sink proxies. However,

when the SoMTP mechanism is used, the tree structure is

optimized as the source proxy changes, and hence reduces

the data dissemination cost.

Figure 14(c) compares the overall message complexity

based on whether the SoMTP mechanism is used or not.

As shown in the figure, as the source velocity increases, the

SoMTP mechanism can significantly reduce the overall mes-

sage complexity when the source velocity is small. However,

the difference becomes smaller when the source velocity is

very large. The reasons can be found from Fig. 14(a) and

(b). As the source velocity is small, the increasing rate of

the control message complexity is much slower than the re-

ducing rate of the data message complexity. However, as the

source velocity becomes very large, the increase of the con-

trol message complexity is similar to the decrease of the data

message complexity.

6. Related work

The Euclidean Steiner Tree Problem (ESTP) is known as

NP-hard, and the history of heuristics for ESTP dates back

to the early 1970s. Most heuristics [23–25, 21] from the lit-

erature use a Minimum Spanning Tree (MST) of the given

set of terminals as the initial solution, and then optimize it

to approach a Steiner Minimum Tree. In particular, Smith,

Lee and Liebman [21] proposed a heuristic, in which a list of

full Steiner trees (FSTs) are constructed, and a subset of the

FST sets are found such that the FSTs spans all terminals and

the resulting tree is as short as possible. The scheme has a

computational complexity of O(n log n), and it is both theo-

retically and practically the fastest heuristic known for ESTP.

Although our centralized schemes are based on this heuristic,

our schemes are different in the following aspects: First, if

there is no sensor node located at the computed Steiner point,

the sensor node closest to the point is picked; second, we con-

sider the situations that nodes may join or leave the multicas-

ting group over the time, and propose on-line schemes which

have lower overhead than applying the heuristic directly.

To support dynamic multicasting in the Internet, two types

of schemes have been proposed: those that allow rearrange-

ment of the tree, called rearrangeable on-line schemes [26],

and those do not, called non-rearrangement on-line schemes

[27, 28, 9]. Among them, the heuristic ARIES [9] performs

the best. ARIES adds a new node to an existing tree via the

shortest path, and only the subtrees including newly added or

deleted nodes are reconfigured every certain time. Our cen-

tralized off-line schemes and distributed schemes are based

on the same idea that only the affected subtrees (not the whole

tree) are configured after nodes join or leave. Different from

ARIES, we do not require each multicasting member to be

aware of the whole network topology or its distance to other

members. The requirement may be feasible for the Internet,

where routers can naturally obtain the information through

the underlying topology advertisement protocol. However,

it is not applicable to sensor networks, where running the

topology advertisement protocol may cause large overhead.
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Many multicasting protocols [10–12] have been proposed

for mobile ad hoc networks (MANETs). These protocols em-

phasize on route robustness since MANETs have frequent

path breaks due to high node mobility. Our schemes also con-

sider the mobility of sources and sinks. However, we stress

more on energy efficiency due to the strict energy constraints

in sensor networks. In particular, we propose a proxy-based

framework to address the mobility problem and focus on the

problem of efficiently reconfiguring the proxy tree to accom-

modate the mobility of sinks and sources.

In the area of wireless sensor networks, a number of data

dissemination schemes can support multicasting. For exam-

ple, the directed diffusion scheme [3] asks sinks to flood their

interests to the sensor network, and asks sources matching the

interests to send their data to the sinks along multiple paths. In

the TTDD scheme [4], each source maintains a system-wide

grid-based structure, through which the availability adver-

tisement and data are disseminated. These schemes, how-

ever, do not efficiently support sink or source mobility since

the changes of sink or source positions cause large over-

head, especially when the network size is large. In addition,

the data dissemination structure is not optimized to reduce

the cost. Particularly, in [3], data are usually disseminated

along the shortest paths connecting the source and sinks, with

only opportunistic optimizations; in [4], data is always dis-

seminated along the grid structure. Different from the those

schemes, our proposed schemes can address the above issues.

Recently, Huang et al. [29] studied spatiotemporal multicast-

ing in sensor networks. The study optimizes multicast from a

source to a certain geographic area, while our schemes opti-

mize multicast from a source to multiple sinks scattered over

the network. Kim and Bhattacharya et al. [30, 31] proposed

asynchronous multicasting schemes for sensor networks, in

which a source pushes data to multiple replicas in the net-

work, and sinks query their nearby replicas to get the dissem-

inated data. These schemes mainly studied how to optimize

the replica placement based on factors such as the sink lo-

cations, the data updating rate and the data querying rate.

However, our schemes focus on optimizing the data dissem-

ination tree structure to minimize the dissemination cost.

7. Discussions

7.1. Load balance and system lifetime

If sinks and sources are stationary, using the proposed

schemes, sensing data will be disseminated along the same

tree repeatedly. As a result, sensor nodes in the tree will

consume more energy than nodes off the tree, which will

eventually lead to network partition and thus short network

lifetime. Therefore, the proxy tree should alter gradually. In

this paper, however, we assume that the sources could dy-

namically change and the sinks are mobile. If the mobility

pattern is balanced in the network, the energy consumption

will be balanced among the sensor nodes. Otherwise, some

measures could be taken to address the issue.

One approach for balancing the energy consumption is to

let nodes rotate to serve on the tree. Specifically, when a node

has been on the tree for a certain time period maxon , it leaves

from the tree and some nearby node is picked up to replace

it. The quiting node will not be recruited again until it has

been off the tree for a certain time period minof f .

Proxy nodes themselves may also be overloaded, and the

above approach can be applied on them as well. In particular,

when a sink (source) proxy has been on duty for more than

maxon , it sends a notice to the associated sink (source), which

will pick another node that has been off the tree for more than

minoff, as its new proxy node.

7.2. Node failures

Some nodes on the tree may fail for some reasons. If a sink

(source) proxy fails, the associated sink (source) will detect

the failure since it cannot query (push) sensor data success-

fully. If a node on the path connecting a proxy node and a

Steiner node (or two Steiner nodes) fails, the failure can be

tolerated by the underlying routing protocols. This is due

to the reason that the data sending from an upstream proxy

(Steiner) node to a downstream Steiner (proxy) node using a

geographic routing such as Greedy Perimeter Stateless Rout-

ing (GPSR) [16], which can avoid defective points or areas.

If a Steiner node on the tree fails, the information about its

downstream Steiner (proxy) nodes is lost. Therefore, we need

a method that not only detects the failure but also rescues the

lost information. The method can be designed as follows:

When a node is selected as a Steiner node, its location is

recorded at its parent Steiner (proxy) node; meanwhile, the

location information of its downstream Steiner (proxy) nodes

is replicated at the nodes surrounding it. Later, if the Steiner

node fails, the message disseminated from its parent Steiner

(proxy) node will eventually reach the node closest to the

failed node, and the node will be picked to replace the failed

node. Recall that the location information of its downstream

Steiner (proxy) nodes is replicated at this node. Therefore,

the message can still be disseminated along the tree.

8. Conclusions

In this paper, we addressed the problem of efficient dynamic

multicasting in wireless sensor networks. We proposed a

dynamic proxy tree-based framework, and focused on the

issue of efficiently reconfiguring the proxy tree as proxies fre-

quently change from one node to another. The problem was

modeled as on-line reconstructing a Steiner minimum tree in
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an Euclidean plane. Some centralized on-line schemes were

proposed to solve the problem. Considering the strict energy

constraints and the locality requirements in wireless sensor

networks, we further proposed two distributed schemes, the

shortest path-based (SP) scheme and the spanning range-

based (SR) scheme. Extensive simulations were conducted

to evaluate the proposed schemes. The results showed that

the distributed schemes can achieve similar performance as

the centralized schemes, and the SR scheme outperforms the

SP scheme.
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