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Abstract—Today’s location-sensitive service relies on user’s
mobile device to determine its location and send the location
to the application. This approach allows the user to cheat
by having his device transmit a fake location, which might
enable the user to access a restricted resource erroneously
or provide bogus alibis. To address this issue, we propose A
Privacy-Preserving LocAtion proof Updating System (APPLAUS)
in which co-located Bluetooth enabled mobile devices mutually
generate location proofs, and update to a location proof server.
Periodically changed pseudonyms are used by the mobile devices
to protect source location privacy from each other, and from
the untrusted location proof server. We also develop user-centric
location privacy model in which individual users evaluate their
location privacy levels in real-time and decide whether and
when to accept a location proof exchange request based on their
location privacy levels. APPLAUS can be implemented with the
existing network infrastructure and the current mobile devices,
and can be easily deployed in Bluetooth enabled mobile devices
with little computation or power cost. Extensive experimental
results show that our scheme, besides providing location proofs
effectively, can significantly preserve the source location privacy.

I. INTRODUCTION

Mobile devices, such as smartphones and PDAs, are playing
an increasingly important role in people’s lives. Location-
based services take advantage of user location information
and provide mobile users with a unique style of resource and
services. Nowadays more and more location-based applica-
tions and services require users to prove their locations at a
particular time. For example, “Google Latitude” and “Loopt”
are two services that enable a user to track his friend’s location
in real-time. As location proof plays a critical role in enabling
these applications, they are location-sensitive. The common
theme across all these applications is that they offer a reward
or benefit to users located in a certain geographical location.
Thus, users have the incentive to lie about their locations.

There are many kinds of location-sensitive applications.
One category is location-based access control. For example, a
hospital might limit access to patient information by doctors
or nurses unless they can prove that they are in a particular
room of the hospital [16]. Meanwhile, one class of popular
location-aware applications works only when users are able to
prove their history locations [22], such as auto insurance quote
in which auto insurance company might provide discounts to
drivers who can prove that they take high-safety routes during
their daily commutes, fraud reduction on eBay in which loca-
tion proofs from the seller can serve as additional evidence that
the seller’s account has not been compromised by an attacker,

police investigations in which police forces are interested in
finding ways for people to be able to provide efficient and
trusted alibis, and location-based social networking in which
a user can ask for a location proof from the service requester
and accepts the request only if the sender is able to present a
valid location proof.

All these location-sensitive applications require users to
prove that they really are (or were) at the claimed loca-
tion. Although most mobile users have devices capable of
discovering their locations, they lack a mechanism to prove
their current or past locations to applications and services.
One possible solution is to build a trusted computing module
on each mobile device to make sure trusted GPS data is
generated and transmitted, but its cost will be very high.
Although cellular service providers have tracking services that
can help verify the locations of mobile users in real-time, the
accuracy is not good enough and the location history can not
be verified. Several systems have recently been designed to
provide end users the ability to prove their locations through
WiFi infrastructure. For example, [22] proposed a solution
that is suitable for third-party attestation, but relies on a PKI
and the wide deployment of 802.11 access-point infrastructure.
[14] described a trusted computing platform that can be used
to generate unforgeable geotags for mobile content such as
photos and video, however, it relies on the expensive trusted
computing module on mobile devices to generate proofs.

In this paper, we propose A Privacy-Preserving LocAtion
proof Updating System (APPLAUS), which does not rely
on the wide deployment of network infrastructure or the
expensive trusted computing module. In APPLAUS, Bluetooth
enabled mobile devices in range mutually generate location
proofs, which are uploaded to a untrusted location proof server
that can verify the trustworthy level of each location proof. An
authorized verifier can query and retrieve location proofs from
the server. Moreover, our location proof system guarantees
user location privacy from every party. More specifically, we
use statistically changed pseudonyms at each mobile device
to protect location privacy from each other, and from the
untrusted location proof server. We use user-centric location
privacy model in which individual users evaluate their location
privacy levels in real-time and decide whether and when to
accept a location proof request based on their location privacy
levels. Extensive experimental and simulation results show that
our scheme, besides providing location proofs effectively, can
significantly preserve the source location privacy.



The rest of the paper is organized as follows: we first
introduce the preliminaries of our scheme in Section II. After
that, Section III presents our location proof updating scheme.
Section IV presents the source location privacy analysis and
how to deal with colluding attacks. The performance of our
scheme is evaluated in Section V. Finally, we describe the
related work in Section VI and conclude the paper in Section
VII.

II. PRELIMINARIES

Our study can be applied to networks where mobile nodes
are autonomous entities equipped with WiFi or Bluetooth
enabled devices. For example, it could be a pervasive commu-
nication system (a mobile ad hoc network) such as a vehicular
network [9], a delay tolerant network [5], or a network of
directly communicating hand-held devices [1] in which mobile
nodes in proximity automatically exchange information. In this
paper, we focus on mobile networks where Bluetooth enabled
devices such as cellular phones communicate with each other
in short-range Bluetooth protocol. Given its appropriate range
(about 10m) and low power consumption, Bluetooth is a natu-
ral choice for mutual encounters and location proof exchange.

A. Pseudonym

As commonly assumed in many networks, we consider an
online Certification Authority (CA) run by independent trusted
third party that pre-establishes the credentials for the devices.
In line with many pseudonym approaches, to protect location
privacy, we assume that prior to entering the network, every
mobile node i registers with the CA that pre-loads a set of M
public/private key pairs KPub

i ,KPrv
i

M

j=1. The M public keys
KPub

i serve as the pseudonyms of node i. The private keys
KPrv

i enable node i to digitally sign messages, and the digital
certificate validates the signature authenticity. When a node i
receives a probe from another node, it controls the legitimacy
of the sender by checking the certificate of the public key
of the sender and the physical identity, e.g. Bluetooth MAC
address. After that, i verifies the signature of the probe
message. Subsequently, if confidentiality is required, a security
association is established (e.g., with Diffie-Hellman).

B. Threat Model

We assume that an adversary aims to track the location
of mobile nodes. An adversary can have the same credential
as a mobile node and is equipped to eavesdrop communica-
tions. We assume that the adversary is internal, passive and
global. By internal, we assume that the adversary is able
to compromise or control individual mobile device and then
communicate with others to explore private information, or
individual devices would collude with each other to produce
false proofs. By passive, we do not assume the adversary can
perform active channel jamming, mobile worm attacks [28]
or other denial-of-service attacks, since these attacks are not
related to location privacy. By global, we assume that the
adversary can monitor, eavesdrop and analyze all the traffic
in its neighboring area due to short range communications.

In practice, the adversary can thus be a rogue individual,
a set of malicious mobile nodes, or may even deploy its
own infrastructure by placing eavesdropping devices in the
network. In the worst case, the adversary obtains complete
network coverage and tracks nodes throughout the entire net-
work, e.g., it is possible that the untrusted location proof server
might be compromised by the adversary and the location
information can then be easily inferred by examining the
records of location proofs. Therefore, we need to appropriately
design and arrange the location proof records in the untrusted
server so that no private information related to individual
users would be revealed even after being compromised by
adversary. Hence, the problem we tackle in this paper consists
of collecting a set of location proofs for each peer node and
protecting the location privacy of peer nodes from each other,
from adversary, or even from the untrusted location proof
server to prevent other parties from learning a node’s past
and current location.

C. Location Privacy Level

Consider a mobile network composed of N mobile nodes
and each node has M pseudonyms. At time t, for each node i
there are a group of m(t) pseudonyms observed at the location
proof server. Each pseudonym among the m(t) pseudonyms
can involve multiple location proofs across various locations
l1, l2, ..., ln at different time t1, t2, ..., tn. An adversary is
able to correlate the location and time distribution of each
pseudonym to see if two pseudonyms belong to the same node.
For example, the adversary can observe a serial of location
proofs with m(T ) pseudonyms during time T . He then com-
pares the distribution of location proof set B of pseudonym b
with the distribution of location proof set D of pseudonym d
to determine if the two pseudonyms can be linked. Let pd=b

= Pr(distribution D of pseudonym corresponds to distribution
B of pseudonym b), the uncertainty of the adversary, and thus
for our purposes the location privacy level of node i at time
T, is

Ei(T ) = −
m(T )∑
d=1

pd=blog2(pd=b) (1)

The achievable location privacy depends on both the number
of nodes m(T ) and the unpredictability of their whereabouts
in the mix zone pd|b. If a node i has only one pseudonym
observed till time T , its identity is known to the adversary
and its location privacy level is defined to be Ei(T ) = 0. We
can achieve the maximum entropy when every pd=b is close
to 0, which means that the distribution of location proof sets
for each pseudonym is undistinguishable.

III. THE LOCATION PROOF UPDATING SYSTEM

In this section we introduce the location proof updating
architecture, the protocol, and how mobile nodes schedule their
location proof updating to achieve statistically strong location
privacy in APPLAUS.



A. Architecture

In APPLAUS, mobile nodes communicate with neighboring
nodes through Bluetooth interface, and communicate with the
untrusted server through cellular interface. Based on different
roles they are playing in the process of location proof updating,
they are categorized as Prover, Witness, Location Proof Server,
Certificate Authority or Verifier. The architecture and message
flow of APPLAUS is shown in Figure 1.
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Fig. 1. Location Proof Updating Architecture and Message Flow

• Prover: Prover is the node who needs to collect location
proofs from its neighboring nodes. When a location proof
is needed at time t, the prover will broadcast a location
proof request to its neighboring nodes through Bluetooth
communication. If no positive response is received, the
prover will generate a dummy location proof and submit
it to the location proof server.

• Witness: Once a neighboring node agrees to provide
location proof for the prover, this node becomes a witness
of the prover. The witness node will generate a location
proof and send it back to the prover.

• Location Proof Server: As our goal is not only to moni-
tor real-time locations, but also to retrieve history location
proof information when needed, a location proof server
is necessary for storing the history records of the location
proofs. It communicates directly with prover nodes who
submit their location proofs. As the source identities of
the location proofs are stored as pseudonyms, the location
proof server is untrusted in the sense that even though it is
compromised and monitored by attackers, it is impossible
for the attacker to reveal the real source of the location
proof.

• Certificate Authority: As commonly assumed in many
networks, we consider an online Certification Authority
(CA) run by an independent trusted third party. Every
mobile node registers with the CA and pre-loads a set of
public/private key pairs prior to entering the network. CA
is the only party who knows the mapping between real
identity and pseudonyms (public keys), and works as a
bridge between the verifier and location proof server. It
can retrieve location proof from the server and forward

it to the verifier.
• Verifier: Verifier is a third-party user or an application

who is authorized to verify a prover’s location within
a specific time period. The verifier usually has close
relationship with the prover, e.x., friends or colleagues,
to be trusted enough to gain authorization.

B. Protocol

When a prover needs to collect location proofs at time t, it
executes the protocol in Figure 2 to obtain location proofs from
the neighboring nodes within its Bluetooth communication
range. Each node uses its M pseudonyms PM

j=1 as its identity
throughout the communication.

1) The prover broadcasts a location proof request to its
neighboring nodes through Bluetooth interface accord-
ing to its update scheduling. The request should contain
the prover’s current pseudonym Pprov , and a random
number Rprov .

2) The witness decides whether to accept the location
proof request according to its witness scheduling. Once
agreed, it will generate a location proof for both prover
and itself and send the proof back to the prover. This
location proof includes the prover’s pseudonym Pprov ,
prover’s random number Rprov , witness’s current times-
tamp Twitt, witness’s pseudonym Pwitt, and their shared
location L. This proof is signed and hashed by the
witness to make sure that no attacker or prover can
modify the location proof and the witness cannot deny
this proof. It is also encrypted by the server’s public
key to prevent from traffic monitoring or eavesdropping
attacks.

3) After receiving the location proof, the prover is responsi-
ble for submitting this proof to the location proof server.
It will also include its pseudonym Pprov and random
number Rprov in the message.

4) An authorized verifier can query the CA for location
proofs of a specific prover. This query contains a real
identity and a time interval. The CA first authenticates
the verifier, and then converts the real identity to its
corresponding pseudonyms during that time period and
retrieves their location proofs from the server.

5) The location proof server only returns hashed location
rather than the real location to the CA, who then
forwards to the verifier. The verifier compares the hashed
location with the claimed location acquired from the
prover to decide if the claimed location is authentic.

Witness Prover Server

Pprov || Rprov

M = Pprov || Rprov || Twitt || L

Proof = Eserv(Pwitt || Switt(M) || H(M))

Pprov || Rprov || Proof

Fig. 2. Location Proof Updating Protocol



In order to prevent the CA from knowing locations of a real
identity, we have location proof server calculate the hash of
each location and only send the hashed locations to the CA in
step 5. In this way, the following property can be achieved.

Definition 1 (Separation of Privacy Knowledge): The
knowledge of the privacy information is separately distributed
to the location proof server, the CA, and the verifier,
respectively. Each party only has partial knowledge.

The privacy property of our protocol is ensured by the
separation of privacy knowledge: the location proof server
only knows pseudonyms and locations, the CA only knows the
mapping between the real identity and its pseudonyms, while
the verifier only knows the real identity and its authorized
locations. Attackers are unable to learn a user’s location
information without integrating all the knowledge. Therefore,
compromising either party of our system does not reveal
privacy.

C. Scheduling Location Proof Updates
As discussed before, the adversary might obtain complete

coverage and track nodes throughout the entire network, by
compromising the location proof server and obtain all history
location proofs. Therefore, we need to appropriately design
and arrange the location proof updating schedules for both
prover and witness so that no source location information
related to individual user would be revealed even when the
server is compromised by adversary.

P1

P2

PM

Node i

.

.

.

Fig. 3. Example of individual pseudonym update vs. entire node update

Suppose a mobile node i has a set of pseudonyms
P1, P2, · · · , PM which change periodically, and distinct
parameters λ1, λ2, · · · , λM for each pseudonym are pre-
determined. If each pseudonym Pj updates its location proofs
(including dummy proofs) such that the inter-update interval
follows Poisson distribution with parameter λj , as in Figure 3,
then the entire inter-update intervals for node i follow Poisson
distribution with a parameter of λ = λ1 + λ2 + · · ·+ λM . As
will be discussed in the next section, it has the properties
of pseudonym unlinkability and statistically strong source
location unobservability. The detailed scheduling protocol for
the prover is shown in Algorithm 1. The pre-defined updating
parameter λ determines how frequently location proofs are
updated.

On the other hand, the location privacy of witness nodes
varies depending on time and location when they exchange

Algorithm 1 Location Proof Updating Scheduling for the prover

Input: updating parameter λ;
1: generate M distinct parameter λ1, λ2, · · · , λM such that

λ1 + λ2 + · · ·+ λM = λ
2: for each pseudonym i do
3: while current timestamp t follows Poisson distribution

with λi do
4: send location proof request
5: if request is accepted then
6: submit location proof
7: else
8: generate and submit dummy proof
9: end if

10: end while
11: end for

location proofs for others. It is thus desirable to protect the
location privacy in a user-centric manner, such that each user
can decide when and where to protect its location privacy.
User-centric location privacy [10] [11] [15] is a distributed
approach where each mobile node locally monitors its location
privacy level over time. The user centric approach is easily
scalable and permits a more fine-grained approach to maintain
location privacy. In our model, each mobile node monitors
and measures its own privacy level in real-time and acts upon
it by deciding whether and when to accept a location proof
exchange request. When a location proof exchange request is
received in proximity, it calculates the privacy loss between the
next scheduled updating time and the current updating time.
The privacy loss of node i is defined as follows:

∆ =
Ei(t

′)− Ei(t)

Ei(t)
(2)

where Ei(t) is the location privacy level when the location
proof exchange request is accepted while Ei(t

′) is the location
privacy level at the next scheduled location proof updating
cycle. The difference between the two indicates the privacy
loss if this location proof exchange request is accepted. The
location proof exchange request is only accepted when the
privacy loss is less than a predefined threshold. The drawback
of the user-centric model is that nodes may have misaligned
incentives (i.e., different privacy requirement), which can lead
to failed attempts to achieve location proofs. We use dummy
proofs in Algorithm 1 to deal with failed attempts. The detailed
scheduling protocol for witness is presented in Algorithm 2.

IV. SECURITY ANALYSIS AND COUNTERMEASURES

In this section, we discuss the security property in terms of
source location privacy and colluding attacking, as well as the
countermeasures for these threats.

A. Source Location Privacy

Now we look at how an adversary may reveal location in-
formation by analyzing the location proof history. Suppose the
attacker has sufficient resources (e.g., in storage, computation
and communication). First, the attacker may simply monitor



Algorithm 2 Scheduling Location Proof Updates at Witnesses

Input: time t of incoming location proof exchange re-
quest;

1: calculate location privacy loss ∆ when assuming the
incoming request is accepted

2: if ∆ > ϵ, ϵ is pre-defined location privacy loss threshold
then

3: deny location proof exchange request
4: else
5: accept location proof exchange request
6: end if

and examine the content of a record that may contain the
user’s identity and location. Second, even if the user’s ID
is encrypted or pseudonymized, it is easy for the adversary
to trace back all the location activities related to the same
ID once its pseudonym is discovered. Third, even though the
user’s pseudonyms change periodically, it is still possible for
the adversary to infer this user’s other pseudonyms from one
pseudonym if these pseudonyms change at similar time or
locations. Moreover, the attacker may perform more advanced
traffic analysis including rate monitoring and location correla-
tion. In a rate monitoring attack, the attacker tries to monitor
and correlate location proof updating rates from different
pseudonyms. In a location correlation attack, the attacker may
observe the correlation in updated location between a node
and its neighbor, attempting to deduce a relationship.

According to [20], a mechanism to achieve anonymity
appropriately combined with dummy traffic yields unobserv-
ability, which is the state that Items of Interests (IOIs) are in-
distinguishable from any IOI of the same type. All the subjects
and events under consideration constitute an unobservability
set. In our case, the unobservability set consists of all the
M pseudonyms for each node in the network. Specifically,
we are interested in the privacy property of source location
unobservability. Therefore, we have the following definition
on source location unobservability.

Definition 2: Source location unobservability is a privacy
property that can be satisfied if an attacker cannot determine
the real identity of mobile nodes through full observation
of the location proof records. That is, for each possible
observation O that an attacker can make, if the probability
of an identity I is equal to the probability of I given O, that
is: ∀O,P (I) = P (I|O), then I is called unobservable.

Based on the above definition, we have the following
definition on pseudonym unlinkability.

Definition 3: A system has the property of pseudonym un-
linkability if any pseudonyms P1, P2, · · · , PM of an identity I
presented in the location proof records cannot be inferred from
one to another: ∀i, j,∀O, prob(Pi|O) ̸= prob(Pj |O), i, j ∈
{1, 2, ...,M}, i ̸= j.

Obviously, a system satisfies source location unobservability
if and only if it has the property of pseudonym unlinkability.
We need to design a probabilistic solution, which can provide
the chance of reducing the latency as much as possible while
still providing a satisfactory degree of event unobservability.

Let the inter-update delay (d) between location proof updates
k(k > 0) and k + 1 from a pseudonym i(1 ≤ i ≤ M) of
a mobile node be dik = tik+1 − tik, where tik is the updating
time of location proof k from pseudonym i. A global attacker
can observe a sequence of inter-update delays, which can
be represented as a distribution Xi = di1, d

i
2, · · ·. In our

case of statistically strong source location unobservability,
distributions of inter-update delays by different pseudonyms
are statistically distinct from each other. They are distinct from
each other in the sense that by a statistic test one cannot
correlate them with each other. We have the definition of
statistically distinct distributions as follows.

Definition 4: Two probabilistic distinct distribution Xi and
Xj(1 ≤ i, j ≤ M, i ̸= j) are statistically distinct from each
other if they follow the same type of probabilistic distribution
with distinct parameter.

Take the Poisson distribution as an example. This distribu-
tion has only one parameter λ. Hence, if two probabilistic dis-
tributions are both Poisson distributions with distinct means,
they are statistically distinct from each other. Clearly, the more
parameters a distribution has, the harder it is to prove its
statistical distinction. In our scheme, we decide to use Poisson
distribution to control the rate of location proof updating,
not only due to its one-parameter advantage, which makes
it relatively easy to achieve source location unobservability,
but also because Poisson distribution is most similar to the
property of contact rate of mobile nodes in an intermittent
connected network. More specifically, we have the following
Lemma.

Lemma 1: Suppose a mobile node has a set of pseudonyms
P1, P2, ..., PM which change periodically. Each pseudonym i
sends out its location proof updates (including dummy update)
whose inter-update delay follows Poisson distribution with a
parameter of λi. Then all the inter-update delays of this mobile
node follow Poisson distribution with a parameter of λ =
λ1 + λ2 + · · ·+ λM .

Proof 1: Without losing generality, we assume the mobile
node changes its pseudonyms in the order of P1, P2, ..., PM .
As each pseudonym i follows Poisson distribution Xi =

P (X = t) =
λt
ie

−λi

t! , the distribution of the combination of
pseudonyms Pi and Pj is

Y = P (Xi +Xj = k) (3)

=
k∑

t=0

P (Xi = t)P (Xj = k − t) (4)

=
k∑

t=0

λt
ie

−λi

t!
·
λ
(
jk − t)e−λi

(k − t)!
(5)

=
λt
ie

−λi

t!
+

λt
je

−λj

t!
(6)

=
(λi + λj)

te−(λi+λj)

t!
(7)

That is, the sum of two independent Poisson distributions with
parameters of λi and λj also follow a Poisson distribution
with parameter λi+λj . It is easy to extend that the sum of all



pseudonyms also follows Poisson distribution with a parameter
of λ = λi + λ2 + · · ·+ λM�.

Therefore, if each mobile node in the network chooses M
distinct parameters from λ1 to λM for its M pseudonyms, and
schedules location proof updating based on the aforementioned
Poisson distributions, then the location proof records in the
server have the properties of pseudonym unlinkability and
statistically strong source location unobservability.

B. Colluding Attacks

Another threat exists when two nodes collude with each
other to generate bogus location proofs. When a malicious
node C1 needs to prove himself in New York City, he can
have another colluding node C2 to mutually generate bogus
location proofs for him, with location tag of New York City.
Generally, such attacks can be identified by using threshold
based solution or by looking into the location traces. In
threshold based solution, the system can require the prover
to obtain a threshold number of witness nodes, and hence
can deal with some colluding attacks. However, since it is
hard for the prover to always find enough number of witness
nodes, we also use the following solution. The server has
information about the numbers of pseudonyms at particular
time and location. This information can be used to estimate
whether a prover lies about not finding enough peers or always
finding the same peer based on some statistical techniques.

More specifically, we are considering two-level cross-
validation from both location proof server and CA point of
view and then integrating the results to ensure accuracy. The
server-level validation is performed on individual location
proof based on its timestamp and location information, where
all concurrent and co-located location proofs from other
pseudonyms are used to verify the reliability of the target
location proof. For example, when a pair of location proofs
by pseudonyms PA and PB are uploaded, the server checks
if there are concurrent and co-located location proofs from
other pseudonyms, which do not have any interaction with
PA and PB . If there are such location proofs, PA and PB are
suspicious to be colluders, and we then assign an appropriate
trust level for the location proof. Future research issues lie in
how to design trust level metric appropriately for each location
proof, and evaluate an optimal server-level threshold to rule
out the bogus location proofs.

As the CA has the knowledge of mapping between
pseudonyms and real identity, as well as the trust levels of
all individual location proofs for a real identity which are
received from the location proof server, it is able to identify
the trust level of a node in continuous time serial. The CA
can calculate the average and variance of trust levels from
individual location proofs, or the ratio of legitimate proofs
over all the proofs, to determine the trust level of a node.

V. PERFORMANCE EVALUATIONS

In this section, we consider deployment feasibility for
APPLAUS, including the computation and storage constraint,
power consumption, as well as the proof exchange latency. We

also use simulations to compare the performance of APPLAUS
with a baseline scheme, and evaluate the privacy level against
powerful statistical analysis attacks.

A. Prototype Implementation

To study the feasibility of our scheme, we have imple-
mented an experimental prototype of APPLAUS based on the
technique presented in the previous sections. The prototype
has two software components: client and server. The client
is implemented in JAVA on top of Android Developer Phone
2 (ADP2), which is equipped with 528MHz chipset, 512MB
ROM, 192MB RAM, Bluetooth and GPS module, and running
Google Android 1.6 OS. This device can communicate with
the server anytime through AT&T’s 3G wireless data service.
The server component is implemented in C++ on a T4300
2.1GHz 3GB RAM laptop. It stores the uploaded historical
location proof records and manages corresponding indices
using MySQL 5.0. We use two android phones to communicate
with each other to test the practicality of our scheme.

Our client code consumes only 80KB of data memory.
When running, less than 2.5% of the available memory is
taken. We measure the CPU utilization of our client code using
a monitoring application, which allows one to monitor the
CPU usage of all the processes running on the phone. When
our application is in standby, the CPU utilization is about
0.5%, indicating that listening to incoming Bluetooth inquiries
requires very low computation. The CPU utilization goes to
3% and 5% respectively when communicating with another
device and with the server, due to different communication
interfaces. We observe that the CPU utilization reaches the
highest level of 10% when a location proof packet is generated,
in which heavy computations such as authentication and
encryption/decryption are involved.

We also measure the performance with two metrics: proof
exchange time latency and power consumption. Figure 4 shows
the latency to complete a location proof exchange process
for different sizes of public/private key pair. The key size
determines the number of bits in the encrypting keys as well as
the size of the pseudonyms. Larger key size can provide better
security level, but involves more computation and storage
resources. It can be seen from the figure that 128-bit key is
the best choice since it can provide adequate security level,
without introducing too much delay. The distance between
the two devices when they exchange location proof also has
some effect on the latency, where longer distance means longer
delay due to the transmission signal strength. As has been
established in earlier studies [13], more than 80% of contact
durations are less than 10 seconds, and thus there is no
problem for our proof exchange process to be finished within
the contact duration.

Figure 5 measures the power consumption under different
Bluetooth status. There are three status: inquiry, standby and
proof exchange. The inquiry status is used to discover other
Bluetooth devices which are within communication range, and
also send out proof requests. The inquiry process continues
for a pre-specified time, until a pre-specified number of units
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Fig. 4. The latency to perform a location proof exchange under different
size of public/private key pair

have been discovered or until it is stopped explicitly. Bluetooth
devices that only listen to inquiry messages are in standby
status. In our system, inquiry and standby are mutual exclusive
at any time. The device enters the proof exchange status when
it exchanges location proofs with others. The most frequent
status is standby, which consumes only less than 0.1mW of
power with any communication distance. The proof exchange
status consumes the most amount of power and deteriorates
with increasing communication distance; however, it will not
appear until the next location proof updating cycle.

It is also helpful to show how the power consumption
affects the daily normal usage of the mobile device. Figure 6
shows the percentage of power consumption on location proof
exchanges by Poisson parameter λ. As the Poisson distribution
mean λ becomes larger, the power consumption percentage
increases, due to the more frequent location proof updating
activities. It is also confirmed that 256-bit key consumes much
more energy than 128-bit key, which is proved to be the most
appropriate size for public/private key pair. It is easy to see
our scheme does not increase the power consumption too much
(with less than 2.5% power consumption).
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B. Simulation Results

In our simulations, 1000 mobile nodes are deployed in a
3km × 3km area. For each node, the range of Bluetooth
transmission is 10m. We use the Levy walk mobility model
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[21] [6] to generate synthetic device contact events. Previous
work has shown that the Levy walk model can describe
the mobility patterns of a human being relatively well for
a campus-sized area. A contact between two nodes happens
when the nodes are within 10m range of each other.

For each simulation run, we generate a Levy trace with a
certain contact rate and initiate the location proof updating
process with various time intervals. We repeat this experiment
100 times, choosing different contact rates on each run. Each
node has M = 10 pairs of 128-bit public/private keys and a
Poisson distribution parameter λ, which is used to determine
when to change pseudonyms. λ is divided into 10 different
numbers: λ1, λ2, · · · , λ10, where λ = λ1+λ2+ · · ·+λ10. We
define a parameter δ, which is the standard deviation of two
consecutive λi and λi+1 (assuming λi and λi+1 are in non-
decreasing order), to control how to cut λ. Another parameter
ϵ is chosen by each node as a threshold to determine whether
to accept a location proof exchange request based on the user-
centric privacy level.

During our evaluation, we use three metrics: message
overhead ratio, proof delivery ratio, and average delay. The
message overhead ratio is defined as the ratio of dummy
traffic and real proof traffic. The proof delivery ratio is the
percentage of location proof message that is successfully
uploaded to the location proof server. The average delay is
the time difference between the time when a location proof
update is needed and when the location proof message has
reached the location proof server. We compare our APPLAUS
scheme with a baseline scheme in terms of all metrics. In
the baseline scheme, each node does not alter pseudonyms
based on Poisson distribution. Rather, it uses a constant rate
to upload location proofs. Unlike APPLAUS where two nodes
mutually exchange location proofs, the baseline scheme only
uploads its own location proof if there is a proof available. A
dummy message is uploaded instead when there is no proof
available.

Figure 7 shows the performance comparison between our
scheme and the baseline scheme under different ratio of
Intervalproof and Intervalcontact. Here, Intervalproof is
the required interval between two location proof updates,
while Intervalcontact is the mean real contact interval. Let
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Fig. 7. Performance under different ratio of Intervalproof and Intervalcontact

ω = Intervalproof/Intervalcontact. Figure 7 (a) shows that
APPLAUS outperforms baseline on overhead ratio when ω
is larger than 0.75. When ω > 1.5, the overhead ratio of
APPLAUS decreases to as low as 0.2. The proof delivery
ratio in Figure 7 (b) also reaches 93% when ω > 1.5. In
Figure 7 (c), APPLAUS and baseline have similar average
delay when ω > 1, in which the delay is measured as the
unit of Intervalproof . When ω > 1.5, the delay becomes
lower than 0.15 of Intervalproof . We can conclude that when
ω > 1.5, that is, when the location proof update interval
is at least 1.5 of the contact interval, the performance of
APPLAUS reaches an adequate level. The performance is not
improving significantly after ω = 2. Therefore, an appropriate
ratio ω between Intervalproof and Intervalcontact should be
carefully chosen between 1.5 and 2.

C. Privacy
As stated in the previous section, our location proof up-

dating system has the property of pseudonym unlinkability
and statistically strong source location unobservability; i.e., the
source privacy of location information can be well preserved.
In this subsection, we evaluate the robustness of APPLAUS in
defending against powerful traffic analysis and statistical test.

To detect if two pseudonyms belong to the same source,
the attacker can check whether two probabilistic distributions
of proof message time intervals from the two pseudonyms are
identical. For the attacker, the hypotheses of the test are:

• H0 - the two pseudonyms belong to the same source.
• H1 - the two pseudonyms belong to different source.
When the attacker makes a decision, there are some risks to

get wrong decision. The decision is called a detection, if H0 is
accepted when it is actually true. If H0 is in fact true, accepting
H1 is a false negative. On the other hand, if H1 is in fact true,
accepting H0 is a false positive. False positive has no negative
effect on privacy since taking two different pseudonyms as the
same would not help identifying the real source. We focus on
false negative which indicates the percentage of cases that has
not been detected by the attackers.

To test false negative, we use the same simulation setup as
previous section and repeatedly perform K-S test [19] on the
distributions under different standard deviation δ (ranging from
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0.2 to 1) and threshold ϵ (ranging from 0.02 to 0.1). Based
on the test results, we get the false negative rate as shown in
Figure 8. The x-axis is the threshold ϵ of each user. The smaller
ϵ is, the less likely a location proof exchange request would
be accepted. The y-axis represents the standard deviation δ of
two Poisson distribution means. Obviously, larger δ indicates
wider difference between the two Poisson distributions, which
is harder for attackers to differentiate. We can observe from
the figure that the false negative rate of the attacker’s test is
high (above 90%), especially when ϵ < 0.04 and δ > 0.5,
which indicates that as long as the parameters of ϵ and δ are
appropriate selected, the privacy of our system can be well
preserved.

VI. RELATED WORK

Recently, several systems have been proposed to give end
users the ability to prove that they were in a particular place
at a particular time. [23] [2] relies on the fact that nothing is
faster than the speed of light in order to compute an upper-
bound of a user’s distance. [3] proposes challenge-response
schemes, which use multiple receivers to accurately estimate
a wireless node location using RF propagation characteris-
tics. However, dedicated hardware is required to measure
signal round trip time with very high precision and negligible
processing delay. [22] proposes a solution that is suitable
for third-party attestation, but relies on a PKI and wide
deployment of 802.11 access-point infrastructure. APPLAUS



uses a peer-to-peer approach and requires no change to the
existing infrastructure. In [14], the authors describe a secure
localization service that can be used to generate unforgeable
geotags for mobile content such as photos and video. However
this work relies on the high-cost trusted computing module.
SmokeScreen [4] introduces a presence sharing mobile social
service between co-located users which relies on centralized,
trusted brokers to coordinate anonymous communication be-
tween strangers. SMILE [17] [18] allows users to establish
missed connections and utilizes similar wireless techniques
to prove when a physical encounter occurred. However, this
service does not reveal the actual location information to
the service provider thus can only provide location proofs
between two users who have actually encountered. APPLAUS
can provide location proofs to third-party by uploading real
encounter location to the untrusted server while maintaining
location anonymity.

Another focus of this paper is location privacy and source
location anonymity. There has been many previous work in
the area of location privacy for wireless users and devices.
[8] proposes to reduce the accuracy of location information
along spatial and/or temporal dimensions. This basic concept
has been improved by a series of works [7] [12]. All the above
techniques cloak a user’s locations with its current neighbors
by trusted central servers which is vulnerable to DoS attacks
or to be compromised. Our approach does not require the
location proof server to be trustworthy. Xu et al [25] [26]
propose a feeling-based model for location privacy protection
in location-based services, which allows a service user to
express his privacy requirement. Identifying a fundamental
tradeoff between performance and privacy, Shao et al [24]
[27] propose a notion of statistically strong source anonymity
in sensor networks for the first time. Our scheme uses similar
source location unobservability concept in which the real loca-
tion proof message is scheduled through statistical algorithms.
However, their focus is to generate identical distributions
between different nodes to hide the real event source, while
our focus is to design distinct distributions between different
pseudonyms to protect real identity.

VII. CONCLUSIONS

This paper proposed a privacy-preserving location proof
updating system, called APPLAUS, in which co-located Blue-
tooth enabled mobile devices mutually generate location
proofs, and upload to the location proof server. We use statis-
tically changed pseudonyms for each device to protect source
location privacy from each other, and from the untrusted
location proof server. We also develop user-centric location
privacy model in which individual users evaluate their location
privacy levels in real-time and decide whether and when
to accept a location proof exchange request based on their
location privacy levels. To the best of our knowledge, this is
the first work to address the joint problem of location proof and
location privacy. Extensive experimental and simulation results
show that our scheme can provide location proofs effectively
while preserving the source location privacy at the same time.
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