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Abstract—Human mobility prediction has received consid-
erable attention because it helps addressing many practical
problems in mobile networks. Most existing techniques focus on
regular mobility prediction by studying the periodic mobility
pattern of users. However, they fail to detect users’ irregular
mobility patterns, like attending a sporadic event. We address
this problem by proposing techniques to predict event attendance
based on the following basic idea: if a user is interested in events
related to a topic, he may also attend future events related to this
topic. In our solution, to learn how users are likely to attend the
future events, three sets of features are identified by analyzing
users’ past activities, including semantic, temporal, and spatial
features. Then, the supervised learning models are trained to
predict event attendance based on the extracted features. To
evaluate the performance of the proposed techniques, we collect
a dataset based on Meetup that contains semantic descriptions
of all events organized over a period of two years. Evaluation
results show that the supervised classifiers built by all features
outperform those built by individual features, and semantic
features are more effective than temporal features and spatial
features for predicting event attendance.

I. INTRODUCTION

Understanding and predicting human mobility and activities

can help design effective protocols for data dissemination in

Delay Tolerant Networks [1][2][3] and mobile social networks

[4][5], and can assist resource management in wireless net-

works. There have been lots of research efforts on character-

izing and predicting human mobility [6][7][8][9], and most

of them are based on a common observation that human

movements exhibit a high degree of recurrence [10][11]; for

example, people visit regular places repeatedly during their

daily activities.

Although existing techniques can be used to predict users’

regular activities based on their social routines, they fail to pre-

dict users’ activities in many cases. First, existing techniques

cannot be applied to predict users’ irregular movements. For

example, when a sporadic event happens, such as an art

festival, it is hard to infer if a user will attend this event

based on the user’s periodic routines. Second, existing research

can only identify periodic visits to landmarks, but fail to

capture periodic routines when location changes frequently.

For example, a class held every weekday morning may take

place at different buildings. The weekend party of a group of

students may be held at different places each week.
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In this paper, we address these problems by focusing on

irregular mobility prediction; i.e., predicting users’ attendance

at a future event at specific time and location based on their

common interests. For instance, an event of “English group”

is formed when people having difficulties in speaking English

gather together to practice English, and an event of “football

seminar” is formed when a famous football player gives a talk

on campus. The event attendance problem can be formalized

as a problem of predicting if a user will attend a future event

by mining past activities. The basic idea is as follows: if a

user is interested in events related to a topic, this user may

also attend future events related to this topic. For example,

if a student usually attends art-related events (e.g., art class

on weekends), it is more likely the student will go to the art

festival.

It is a challenge to predict event attendance due to t-

wo issues; one is the dearth of an event-based dataset,

and the other is the difficulty of identifying the top-

ic relevance between events. Thanks to the popular-

ity of online social networks [12], such as Meetup

(www.meetup.com), Plancast (www.plancast.com), and

Eventbrite (www.eventbrite.com), where people in the neigh-

borhood can create, organize and sign on social events online,

we are able to collect event-based datasets. We have collected

a dataset based on Meetup that contains 149, 089 users and

132, 739 events organized over a period of two years. Each

event in the dataset has a semantic description. The topic

relevance between events is characterized by the similarity

between the semantic descriptions of events, i.e., semantic

similarity between events. To calculate the semantic similarity

between events, we design a semantic analysis approach

based on categories. In this approach, the semantic similarity

between events is calculated as the sum of their similarities at

different categories.

To predict event attendance, we identify three sets of

features including semantic, temporal, and spatial features.

Semantic features characterize how frequently users attended

similar events in the past, and the semantic similarity between

events is used to identify similar events a user attended in

the past. Temporal features measure users’ temporal pref-

erence when attending events, and spatial features capture

users’ location preference when attending events. Based on

the Meetup dataset, we first evaluate the effectiveness of

each feature in predicting event attendance. Next, we train



three supervised classifiers based on the defined features:

logistic regression [13], J48 decision tree [14] and Naı̈ve

Bayes [15], and evaluate the performance of these classifiers.

The evaluation results demonstrate that the classifiers built by

all features significantly outperform those built by individual

feature, which indicates that event attendance can be affected

by multiple factors. We also observe that semantic features are

more important than temporal features and spatial features for

predicting event attendance.

The rest of the paper is organized as follows. Section II

presents the preliminaries. In Section III, we present the

approach for predicting event attendance. Section IV presents

the evaluation results of the predicting approach. The last

section concludes the paper.

II. PRELIMINARIES

In this section, we first formulate the event attendance

problem, and then introduce the Meetup dataset and our

semantic analysis approach.

A. Problem Formulation

The event-attendance problem is formulated as follows:

Event-Attendance Problem: Given a user u and a future

event e, the goal is to predict if u will attend e with the

following information:

1) The information (description, time, location) of the past

events that user u has attended.

2) The information (description, time, location) of event e.

3) The home location of user u

To solve this problem, we extract features (denoted as Fu,e)

that characterize the relationship between user u and event e.

A binary variable au,e is used to represent if u will attend e.

Then, the extracted features Fu,e are used to predict the value

of au,e.

Fu,e =⇒ au,e

Predicting users’ attendance at events requires a semantic

representation for each event so that the semantic similarity

between events can be computed. To semantically represent an

event, a keyword list is extracted from the description of the

event: {k1, k2, ..., kM}, where M is the number of keywords.

Each keyword ki is associated with a weight wi (0 ≤ wi ≤ 1)

which represents the importance of this keyword. The weight

assignment depends on specific circumstances and will be

discussed later. An event can be semantically represented by

a set of keyword pairs:

K = {(k1, w1), (k2, w2), ..., (kM , wM )}

B. The Dataset

The dataset is collected based on an online social network

called Meetup, which provides people amongst neighborhoods

an opportunity to create, organize and sign on “meetups”

according to their common interests. One such “meetup” is

an event, and therefore Meetup is referred to as an event-

based social network [12]. An upcoming event is posted after

it is planned by the hosting group. People reply “yes” if

TABLE I
CATEGORIES

Arts/Culture Career/Business Cars/Motorcycles

Dancing Education/Learning Community/Environment

Fitness Food/Drink Fashion/Beauty

Games Government/Politics Lesbian/Gay/Bisexual/Transgender

Hobbies/Crafts Health/Wellbeing Language/Ethnics

Lifestyle Movies/Film Literature/Writing

Music Spirituality Outdoors/Adventure

Paranormal Parents/Family Pets/Animals

Photography Religion/Beliefs Fiction/Fantasy

Singles Socializing Sports/Recreation

Support Technology Women

they will attend this upcoming event, and we simply consider

these people as attendants of the event. The previous events

are denoted as past events. From the event website, we can

also find who attended the past events, the rating and the

comments about this event. Since Meetup’s creation in 2001,

it has attracted more than 13 million users over the world and

over 374, 000 events are hosted every month.

In our paper, we use the events in Meetup that were held

in Pennsylvania (US) during 2011 and 2012. The resulting

dataset contains 149, 089 users having 132, 739 events or-

ganized over two years. To semantically represent an event,

keyword pairs are extracted for each event (as discussed in

Section II-A). The keywords are extracted from the topics of

the hosting group and the event description (the title of event).

A weight of 0.8 is assigned to the keywords extracted from

the topics of the hosting group, and a weight of 1 is assigned

to the keywords extracted from the event title. The weight for

the keywords extracted from the event title has higher weight

because it contains unique information related to the event.

C. Semantic Analysis

Since one event can be semantically represented by a set of

keyword pairs, we compute the semantic similarity between

two events as the similarity between two sets of keyword

pairs. The popular methods to compute the similarity include

counting the common keywords or computing the Jaccard

similarity coefficient [16] between the two sets. These methods

are implemented by matching the identical keywords in the

two sets. However, they fail to identify the synonymies due

to the lack of semantic analysis. For example, the synonymies

“speech” and “talk” are considered to be different, even though

they may have the same meaning.

To address this problem, we apply a semantic analysis

approach to compute the semantic similarity between events

based on taxonomy of categories. The similarity at each

category is computed first. Then, the overall similarity is

computed by summing the similarities in all categories. Here,

the category information is pre-defined and we simply adopt

the category information collected in Meetup that is used to

characterize groups and events. There are 33 categories which

are listed in Table I.



Sim(swimming, Sports)=0.797

Sim(swimming, Dance)=0.619

Sim(swimming, Games)=0.611

…

Swimming

à Sports

Sim(women,Women)=1

Sim(women, Beauty)=0.675

Sim(women, Parents)=0.325

…

women

àWomen

Keyword:

swimming

Keyword:

women

Fig. 1. Matching keywords “swimming” and “women” into categories.

In the rest of the paper, for simplicity, the semantic simi-

larity between two events is referred to as “event similarity”,

and the semantic similarity between two words is referred to

as “word similarity”.

1) Matching Keywords into Categories: To compute event

similarity, we first match the keywords of an event into

categories, i.e., one keyword should belong to one category.

To match a keyword to a category, the word similarity

between the keyword and each category is computed, and

this keyword belongs to the category that has the largest

word similarity. Word similarity quantifies how two words

are similar in semantics. For example, Pedersen et. al [17]

present some popular word similarity measures based on

WordNet [18][19], which is a large lexical database of English

not only providing the word definitions, but also recording

various semantic relations between words. In this paper, we

adopt one of the most well-known measures–Lin [20] measure

to compute the word similarity. Lin measure computes the

similarity based on the word definitions. We also test other

similarity measures, which only shows minor difference from

the Lin measure.

Figure 1 shows an example of matching the keywords of an

event into categories. This event is about a swimming class for

women, and it has two keywords: “swimming” and “women”.

Each keyword is matched to the category that has the largest

word similarity. For example, “swimming” has word similarity

of 0.797 with “Sports”, which is the largest among the

word similarities with all categories. Therefore, “swimming”

belongs to the category “Sports”. Similarly, women has the

largest word similarity with “Women”, and thus belongs to

category “Women”.

2) Computing Event Similarity: After matching keywords

into categories, the set of keyword pairs is split into multiple

subsets, and each subset includes the keyword pairs in that

category. The subset of keyword pairs in category i is denoted

as ci = {(ki,1, wi,1), (ki,2, wi,2), ...}, where ki,u is the u-

th keyword and wi,u is the weight of ki,u. To compute

the similarity between two events e1, e2, we first calculate

the event similarity in each category and then sum these

similarities. Before calculating the event similarity in category

i, we first find the two subsets of keywords pairs in category

i for e1 and e2, denoted as c1i , c
2
i . Then the event similarity

Sports: 0.3728

Phtography:0

Women:0

S

Sports:

(swimming, 0.8)

Women:

(women, 1)

Sports:

(hiking, 0.8)

(walking, 1)

Photography:

(photos, 0.8)

Computing

similarity in

each category

Event

similarity:

0.3728

Fig. 2. Computing event similarity by summing similarities in all categories.

in category i is the similarity between c1i and c2i , denoted as

SimC(c1i , c
2
i ). It is calculated as the largest pairwise similarity

between keyword pairs in c1i and c2i , where the similarity

between two keyword pairs is the word similarity between two

keywords multiplied by their weights. The event similarity in

category i is represented as follows:

SimC(c1i , c
2
i ))

= max
u,v

(KeywordPairSim((k1i,u, w
1
i,u), (k

2
i,v, w

2
i,v)))

= max
u,v

(WordSim(k1i,u, k
2
i,v) ∗w

1
i,u ∗ w2

i,v)

(1)

where KeywordPairSim(∗, ∗) represents the similarity be-

tween two keyword pairs, and WordSim(∗, ∗) represents the

word similarity between two words. k1i,u represents the u-th

keyword in c1i , k2i,v represents the v-th keyword in c2i , and w1
i,u,

w2
i,v are the weights of them. Then the semantic similarity

between two events is defined as the summation of similarities

in all categories:

Sim(e1, e2) =
n
∑

i=1

SimC(c1i , c
2
i ) (2)

Figure 2 shows an example on how to compute the event

similarity. One event has keyword pairs (swimming, 0.8) and

(women, 1) and the other has (hiking, 0.8), (walking, 1) and

(photos, 0.8). In the “Women” category and the “Photography”

category, the keywords only appear in one event (either Event

1 or Event 2), and the event similarity is 0 in these categories.

In “Sports” category, both events have keywords, and we need

to compute the event similarity using Equation (1). Here,

the keyword pairs (swimming, 0.8) and (hiking, 0.8) have

similarity 0.367 ∗ 0.8 ∗ 0.8 = 0.235, where 0.367 is the

word similarity between keywords “swimming” and “hiking”,

calculated based on the Lin measure. The two 0.8s are the

weights of the keywords. Similarly, (swimming, 0.8) and

(walking, 1) have similarity 0.466 ∗ 0.8 ∗ 1 = 0.3728. The

keyword pairs (swimming, 0.8) and (walking, 1) have the

largest similarity 0.3728, and thus the event similarity in

category “Sports” is 0.3728. Since the event similarities in



other categories are 0, the semantic similarity between these

two events is 0.3728.

III. PREDICTING EVENT ATTENDANCE

To find out if a user will attend a future event, three sets of

features are defined, including semantic, temporal, and spatial

features, which are defined by studying the history behavior

of the user. More specifically, semantic feature characterizes

the user’s interest in future events by studying the user’s

attendance at past events. Temporal feature exploits temporal

information on user activities and measures the user’s temporal

preference when attending events. Spatial feature is extracted

to measure the user’s location preference when attending

events. In the rest of the paper, user and future event are

denoted as u and e respectively. Next, we introduce these three

features in detail, and then present a prediction approach based

on these extracted features.

A. Semantic Feature

With semantic features, we aim to capture the user’s interest

in future event by studying the user’s attendance at past events.

For example, if a student frequently attended football training

in the past, it is most likely that he will appear at a football

game on campus or attend a seminar from a famous football

player visiting his campus. To quantify user u’s interest in

future event e, two semantic features total attendance and

percentage of attendance are defined.

1) Total attendance: This feature measures the number of

similar-topic events (or referred to as similar events) the user

has attended in the past. Two events are considered to be

similar if their semantic similarity is larger than a similarity

threshold α. Given event e, we count the number of similar

events that u has attended during a time period T in the past.

Here, both α and T are constants and can be set flexibly.

These two parameters will also be used to define the following

features. Formally, total attendance is represented as:

nu,e = |{ei ∈ Eu : te − T < tei < te ∧ Sim(e, ei) > α}|
(3)

where Eu indicates the set of past events that u has attended,

and te is the time of event e.

2) Percentage of attendance: Percentage of attendance is

another semantic feature that can be used to demonstrate

the user’s preference for similar topic. It is computed as the

percentage of events that the user has attended among all

similar events. This feature is effective when the events of

a specific topic are only held infrequently but the user attends

most of them. In this case, total attendance may not identify the

user’s interest in this topic due to the low frequency. Therefore,

we use percentage of attendance to quantify the user’s interest

in this kind of events. Specifically, with event e, we find all

similar events held in a past time period T and compute the

percentage of events that u has attended. Formally, the total

number of similar events in a time period T is:

ne = |{ei ∈ E : te − T < tei < te ∧ Sim(e, ei) > α}| (4)

where E indicates the set of all past events. In Equation (3),

we compute the number of events that user u has attended,

i.e., nu,e. The percentage of attendance for user u and event

e is computed as:

pu,e =
nu,e

ne

(5)

B. Temporal Feature

Users usually have temporal preference when attending

events. For example, a user may prefer to go to gym after work

in the afternoon, and another user may prefer to watch football

game on Saturday. To characterize the temporal preference of a

user u on a future event e, three temporal features are defined:

recent attendance, weekly attendance, and daily attendance.

Before defining the temporal features, we first define a

metric to quantify the temporal relation between two events:

T (e1, e2). For example, if e1 and e2 are both held on Saturday,

they have a large temporal relation on the weekly pattern. The

temporal relation is defined according to different temporal

features and will be discussed when defining specific features.

The temporal features in terms of u and e are calculated by

analyzing similar events that u has attended in the past time

period T . For each of these events ei, we find the temporal

relation T (ei, e) between ei and e. Then, the temporal feature

is calculated by averaging the temporal relations of e with all

these past events.

tu,e =

∑

ei∈ET
u
,Sim(ei,e)>α T (ei, e) ∗ Sim(ei, e)

∑

ei∈ET
u
,Sim(ei,e)>α Sim(ei, e)

(6)

Here, ei ∈ ET
u indicates the past events that user u has

attended in the past time period T . T (ei, e) is the temporal

relation between the past event ei and the future event e,

which is set in accordance with various temporal features.

When computing the average of temporal relation, we use

Sim(ei, e), the event similarity between ei and e, as the weight

of the past event ei. Then, the past event with a larger event

similarity with e has more contributions in computing the

temporal feature.

1) Recent Attendance: Human behaviors can be best char-

acterized by the most recent activities. For example, if a user

frequently takes physical training in the gym recently, it is

likely that he will attend another physical training event. Based

on this, we first study the feature recent attendance, where the

temporal relation is simply related to the time interval between

ei and e. We use the reciprocal of the time interval as the

temporal relation between the events:

T r(ei, e) =
1

te − tei

Then, recent attendance is represented as:

tru,e =

∑

ei∈ET
u
,Sim(ei,e)>α T r(ei, e) ∗ Sim(ei, e)

∑

ei∈ET
u
,Sim(ei,e)>α Sim(ei, e)

(7)



2) Weekly Attendance: People usually have similar behav-

iors on the same day of a week, as implied by the example that

the user prefers to attend football events on Saturday. Here, the

temporal relation Tw(ei, e) indicates if the two events happen

on the same day of the week.

Tw(ei, e) =

{

0 dow(tei ) 6= dow(te)
1 dow(tei ) = dow(te)

where dow(t) ∈ [1, 2, ..., 7] returns a value corresponding to a

specific day in a week (Monday, Tuesday,..., Sunday) of time

t. Formally, weekly attendance is represented as:

twu,e =

∑

ei∈ET
u
,Sim(ei,e)>α Tw(ei, e) ∗ Sim(ei, e)

∑

ei∈ET
u
,Sim(ei,e)>α Sim(ei, e)

(8)

3) Daily Attendance: This feature characterizes another

human routine, i.e., having similar behaviors at similar time of

a day. For example, a person normally attends an after-work

exercise class at 5 pm every day. However, his schedule may

not be exactly the same (i.e., it may be a little bit early or

late when attending the same activity), and hence there may

be some deviation. A Gaussian function is applied to measure

how two time points (in hours) at a day are similar:

s(t1, t2) = e−
(t1−t2)2

2

Based on this formula, the temporal relation for daily atten-

dance is calculated as

T d(ei, e) = s(tei , te) = e−
(tei

−te)2

2

The daily attendance is computed as:

tdu,e =

∑

ei∈ET
u
,Sim(ei,e)>α T d(ei, e) ∗ Sim(ei, e)

∑

ei∈ET
u
,Sim(ei,e)>α Sim(ei, e)

(9)

C. Spatial Feature

Spatial features can be extracted to capture the spatial

preference of users when attending events. We characterize

two spatial features: home distance and location preference.

1) Home Distance: Home distance measures the distance

between the home location of user u and the location of event

e:

hu,e = Dist(lhu, le)

where Dist(∗, ∗) is the distance between two locations, lhu is

the home location of user u and le is the location of event e.

2) Location Preference: This feature characterizes the lo-

cation preference when a user attends events. For example, a

student may only attend local football games, and if the game

is held at another city far away, he may not attend. We use

similar formula as Equation 6 to characterize how event e is

spatially related to past events. Here, the spatial relation is

simply the distance between the past event ei and the event e,

i.e., Dist(lei , le). The location preference can be represented

as follows:

lu,e =

∑

ei∈ET
u
,Sim(ei,e)>α Dist(lei , le) ∗ Sim(ei, e)
∑

ei∈ET
u
,Sim(ei,e)>α Sim(ei, e)

(10)
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Fig. 3. The Cumulative Distribution Function (CDF) of the number of events
attended per user from 2011 to 2012.

D. Predicting Approach

We adopt a supervised learning approach to learn how the

extracted features affect users’ decisions on event attendance.

This process is also referred to as supervised binary classifica-

tion, considering that ‘attend or not’ is a binary classification.

Specifically, the Meetup data will be split into training data

and testing data. The supervised classifier learns how features

affect event attendance from the training data, and the learned

classifier is evaluated on the testing data. There are many

supervised classifiers in the literature [21], and we use three

classifiers in this paper, including logistic regression [13], J48

decision tree [14] and Naı̈ve Bayes [15]. One challenge of the

supervised learning is how to set the parameters including the

past time period T and the similarity threshold α. In the next

section, we will experimentally test the effect of the parameters

on the performances and determine the appropriate values for

the parameters.

IV. PERFORMANCE EVALUATIONS

Based on the dataset collected from Meetup, we evaluate the

proposed solutions in this section, including the effectiveness

of the extracted features and the influence of the parameters

on performances. This section starts with the discussion on

data selection, evaluation strategy and experiment setting, and

then presents the evaluation results.

A. Data Selection

To evaluate the effectiveness of the extracted features and

train the supervised classifiers, we use data collected from

Meetup. For each user-event pair {u, e} in the dataset, Fu,e

represents the extracted features and au,e represents if u

attends e in Meetup. We include all the information associated

with one user-event pair to a data instance:

[Fu,e, au,e]

Data instances are selected from all users and all events held

during 2011-2012 in Pennsylvania. Amongst all these users,

only small portion of them actively participate events as shown

in Figure 3, which plots the cumulative distribution function

(CDF) of the number of events attended per user during the

two years. The CDF shows that only about 20% of users

have attended events, and only about 1% users actively attend
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Fig. 4. ROC curves for the decision stumps built by individual features: (a) decision stumps built by semantic features, total attendance and percentage of

attendance; (b) decision stumps built by temporal features, recent attendance, weekly attendance and daily attendance; (c) decision stumps built by spatial
features, home distance and location preference. A classifier is better if its ROC curve is closer to the upper-left corner. The reference line in the diagonal
represents the ROC curve for the random classifier.

more than one event every month on average. These 1% users

are referred to as active users. Since inactive users do not

attend events frequently, it is not necessary to include them

for evaluation. Thus, we only consider the active users when

selecting data instances. A data instance is a positive instance

if au,e = 1, and it is a negative instance if au,e = 0. To train

the binary classifier unbiasedly, there should be equal numbers

of positive instances and negative instances. In our dataset,

there are 60, 221 positive instances including all the active

users and their attended events. To have the same number

of negative instances, we randomly choose 60, 221 negative

instances from the active users and the events they have not

attended.

B. Evaluation Strategy

The Receiver-Operating-Characteristics (ROC) [22] curve

is commonly used to illustrate the performance of a binary

classifier system. It plots the fraction of true positives out of

the total actual positives (true positive rate) vs. the fraction

of false positives out of the total actual negatives (false

positive rate), at various threshold settings. The ROC curve

is a monotonic non-decreasing function of true positive rate

over the false positive rate. A random classifier only results

in a curve y = x in the diagonal, and a classifier is better

if it is closer to the upper-left corner. Based on this fact, the

area under the ROC curve (AUC) is an important metric to

evaluate the overall performance of a binary classifier [23]. It

is claimed in [24] that AUC is a statistically consistent and

discriminating metric. Besides AUC, another metric used in

this paper is the prediction accuracy which is used to evaluate

the performance of various supervised classifiers.

C. Experiment Setting

All the experiments are performed using the WEKA soft-

ware [21]. The supervised classifiers used in our experiments

include logistic regression, J48 decision tree and Naı̈ve Bayes.

It is easy to inspect the inner structures of these simple

classifiers, so that we can learn the role of each feature

TABLE II
AUC FOR INDIVIDUAL FEATURES USING DECISION STUMPS

Features AUC (α = 1) AUC (α = 3)

Random 0.5 0.5

Total Attendance 0.6 0.65

Percentage of Attendance 0.74 0.768

Recent Attendance 0.57 0.632

Weekly Attendance 0.679 0.709

Daily Attendance 0.627 0.67

Home Distance 0.607 0.607

Location Preference 0.653 0.66

in prediction. Other advanced classifiers (like random forest,

SVM) are also tested using WEKA, but they only show minor

improvement over these simple classifiers. For the dataset,

the first half is used for training and second half is used for

performance evaluation. The WordNet database (which is used

to compute word similarity) used in our experiment is the most

updated version for Windows (WordNet 2.1).

D. Individual Features

We evaluate the prediction accuracy power of each individ-

ual feature using decision stump, which is a one-level decision

tree [25]. Based on one individual feature, a predicting score is

computed for each user-event pair, and a higher score usually

means a higher attending probability. For the semantic feature

or temporal feature, a higher feature value implies a higher

attending probability, so the score is simply set to be the

feature value. For the spatial feature, a smaller feature value

implies a higher attending probability, so the score is set to

be the negative of the feature value. By setting a decision

threshold, the instance with score higher than the threshold is

predicted as positive (will attend), otherwise it is predicted as

negative (not attend). As the decision threshold varies, we get

different true positives and false positives, which will generate
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Fig. 5. The impact of the parameters T and α on the prediction performance in terms of AUC
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Fig. 6. The impact of the parameters T and α on the prediction performance in terms of prediction accuracy

the ROC curve. The ROC curves for the decision stumps built

by individual features are shown in Figure 4. The reference

line in the figure represents the ROC curve generated by the

random classifier. To be more general, we test the features

computed using different parameters: past time period T and

similarity threshold α. Since the impact of T on the ROC

curve is not easy to observe, we only present the ROC curves

under different α, with T = 90 days.

For semantic features, as shown in Figure 4 (a), the decision

stumps built by total attendance and percentage of atten-

dance have ROC curves higher than the reference line. This

result illustrates the effectiveness of both semantic features

in predicting event attendance. In addition, we also observe

a superiority of the percentage of attendance over the total

attendance. This indicates that the percentage of similar events

a user has attended in the past time period is more helpful on

predicting whether the user will attend the future event.

Figure 4 (b) shows the ROC curves for the decision stumps

built by three temporal features. As can be seen, the decision

stumps built by temporal features have ROC curves higher

than the reference line, and decision stump built by weekly

attendance has the highest ROC curve. Therefore, exploiting

temporal features about the attendance at similar events, es-

pecially the weekly attendance, provides significant assistance

in predicting event attendance.

For the spatial features, as shown in Figure 4 (c), the ROC

curves for the decision stumps built by home distance and

location preference are higher than the reference line, and the

decision stump built by location preference is the highest.

Therefore, location is also an important factor that affects

event attendance.

By comparing the predicting power of the features under

different similarity threshold α (α = 1 and α = 3), we find

that α = 3 has an overall superiority over α = 1, which

implies that the similarity threshold may have impact on the

predicting power.

Finally, we compare the predicting power of all individual

features by computing the AUCs corresponding to the ROC

curves in Figure 4. As shown in Table II, the results are

consistent with what we have observed from the ROC curves,

where percentage of attendance outperforms other seman-

tic features, weekly attendance outperforms other temporal

features, and location preference outperforms other spatial

features. Amongst all these features, percentage of attendance

has the most predicting power, with AUC (α = 1) of 0.74 and

AUC (α = 3) of 0.768. These results suggest that semantic

features are the most important features for predicting event

attendance.

E. Supervised Learning Evaluation

In this part, the predicting power of all features are com-

bined in supervised learning models. We first evaluate the

effects of the two parameters T and α on prediction. After

setting the appropriate parameters, we build supervised clas-

sifiers using all features and compare it with those using only

one feature.

1) Determining Parameters T and α: The two parameters,

past time period T and similarity threshold α are used in



Section III to define features. The two parameters affect

all features except home distance, and therefore impact the

performance of the supervised classifiers. We train three

supervised classifiers, logistic regression, decision tree and

Naı̈ve Bayes, using the features defined with different T and

α. The performance of these classifiers are shown in Figure 5

and Figure 6. The figures show the prediction performance in

terms of AUC and accuracy. As can be seen from Figure 5,

as α varies from 1 to 5, AUC reaches the maximum value

when α = 2.5 for all classifiers. In addition, AUC has a

large improvement when T increases from 30 days to 60
days, but the improvement is much smaller when T increases

from 60 days to 90 days. We also increase T to be longer

than 90 days, but could not find any noticeable change for

AUC. These results suggest that the history data in a time

period of 90 days is enough to infer user’s event attendance.

For prediction accuracy, as shown in Figure 6, the highest

prediction accuracy is achieved when α = 2.5. With the

increase of T , the prediction accuracy does not have too much

improvement. Thus, α is set to be 2.5 and T is set to be 90
days in the rest of the paper.

2) Comparing With Learning models Built with One Fea-

ture: By including all features in the supervised learning mod-

els, we should achieve better predicting power than individual

features. In this subsection, we compare the performance of

the supervised classifiers built with all features and those built

with individual features.

The evaluation results of three classifiers are presented in

Table III. As can be seen, the classifiers built with all features

can increase AUC by 0.02 - 0.25, and increase the prediction

accuracy by 0.03−0.20 compared to classifiers with individual

features. These results demonstrate that the predicting power

can be increased significantly by combining all features.

The performance of different classifier is different. Logistic

regression and Naı̈ve Bayes have worse performance than

J48 decision tree, and Naı̈ve Bayes is the worst. The low

performance of logistic regression and Naı̈ve Bayes is due to

the following two reasons. First, the feature home distance

does not increase the predicting performance in the two

classifiers, since the classifiers built with home distance have

AUCs even smaller than the random baseline of 0.5. Another

reason is related to the intrinsic mechanisms in the classifiers.

Logistic regression is based on a linear model, which is not

sufficient to characterize the effect of each feature. Naı̈ve

Bayes assumes independence of multiple features, but the

features may mutually correlate to some extent.

To identify the effect of each feature in the classification,

we study the inner structures of the two classifiers: logistic

regression and J48 decision tree. Naı̈ve Bayes is not considered

here because it has the worst performance. The coefficients of

the features (absolute value) in the logistic regression classifier

are shown in Table IV, and the top three levels of the J48

decision tree are shown in Figure 7. All results manifest the

contribution of the feature percentage of attendance, as it has

the largest coefficient in logistic regression and dominates

in the top three levels of the J48 decision tree. Thus, when

TABLE IV
THE COEFFICIENTS OF FEATURES IN LOGISTIC REGRESSION.

Features Coefficients

Percentage of attendance 6.0789

Weekly attendance 1.95

Daily attendance 1.05

Total attendance 0.0118

Recent attendance 0.0118

Home distance 0

Location preference 0

Fig. 7. The top three levels of the J48 decision tree

predicting whether a user will attend an event, the most

important task is to find all similar events in the history and

the percentage of attendance. In addition to percentage of

attendance, the temporal features weekly attendance and daily

attendance also play important roles in predicting, since they

also belong to the top three coefficients in logistic regression.

This further demonstrates that users’ behaviors conform with

the temporal routines to some extent. The spatial features,

location preference and home distance, do not play important

roles in the J48 decision tree and even have 0 coefficients

in the logistic regression, thus the spatial features are not as

important as the semantic features and temporal features in

predicting event attendance.

3) Studying the Importance of Semantic Information: Since

an important part of our prediction approach is the consid-

eration of semantic information, we next run experiments

to study the importance of the semantic information. In the

first experiment, we compare between classifiers built with

three sets of features: semantic features, temporal features,

and spatial features, to see if the semantic features have better

predicting power. The results are shown in Figure 8. As can

be seen, the classifier built with semantic features has the

best performance in terms of AUC and prediction accuracy.

Therefore, semantic features are more important than temporal

features and spatial features for predicting event attendance.

In the second experiment, we study the impact of semantic

information on individual features. As presented in Section III,

besides semantic features, temporal features and spatial fea-

tures also use semantic information. For example, the temporal

feature is calculated by averaging the temporal relations of

the future event with all past events. When computing the



TABLE III
COMPARING CLASSIFIERS BUILT WITH ALL FEATURES AND THOSE BUILT WITH INDIVIDUAL FEATURE

Features
Logistic Regression J48 Naı̈ve Bayes
AUC Accuracy AUC Accuracy AUC Accuracy

Random Baseline 0.5 0.5 0.5 0.5 0.5 0.5

Total Attendance 0.718 0.639 0.702 0.656 0.633 0.602
Percentage of Attendance 0.852 0.76 0.818 0.763 0.834 0.736

Recent Attendance 0.389 0.503 0.658 0.628 0.618 0.504
Weekly Attendance 0.752 0.68 0.746 0.703 0.752 0.658
Daily Attendance 0.715 0.656 0.7 0.66 0.716 0.654
Home Distance 0.395 0.503 0.699 0.637 0.397 0.503

Location Preference 0.671 0.561 0.685 0.658 0.67 0.56

All Features 0.872 0.786 0.875 0.805 0.847 0.767

AUC Accuracy
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Fig. 8. Comparing the performance of individual features using the J48
decision tree.
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Fig. 9. Semantic information can be used to increase the predicting power
of various features such as recent attendance, weekly attendance, daily

attendance and location preference (evaluated using the J48 decision tree).

average of the temporal relations, the event similarity between

the past event and the future event is used as the weight

of the past event. The spatial feature location preference is

also calculated using the same method. We run an experiment

to see how the semantic information affects the predicting

power of these features. Since the spatial feature home distance

does not use semantic information, it is not tested here.

We compare the predicting power of the features calculated

using semantic information and the features calculated without

semantic information. The results are shown in Figure 9.

As can be seen, the features with semantic information can

improve AUC by about 0.05, and improve the prediction
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Fig. 10. The effect of the length of the training set on the performance of
different classifiers.

accuracy by about 0.03. These results further demonstrate the

importance of considering semantic information.

4) The Length of the Training Set: In the previous ex-

periments, the first half of the dataset is used for training

and the second half is used for evaluation. We further run

an experiment to see if the length of the training set (as a

percentage of the whole dataset) affects the performance of

the supervised classifier. The evaluation results of all three

supervised classifiers are shown in Figure 10. As can be seen,

with the length of the training set increases, logistic regression

is stable, J48 decision tree shows some improvement in term

of AUC. Naı̈ve Bayes has a slight increase in AUC, but it has

the worst AUC as the training set varies. For the other two

classifiers, J48 decision tree is preferred when the percentage

of training set is larger than 40%, while logistic regression is

preferred if the length of training set is smaller than 40%.

V. RELATED WORK

Characterizing and predicting human mobility have attracted

lots of research efforts. Some earlier prediction techniques are

based on characterizing user’s history spatial trajectories. Gao

et al. [26] characterized user mobility behaviors at a fine-

grained level based on the Hidden Markov Model formulation

of user mobility. Yuan et al. [27] employed semi-markov

process model to describe user mobility as transitions between

landmarks. These methods aim to capture the short-term

mobility trajectory, but fail to capture the long-term human



mobility. Later prediction approaches are more focused on

the analysis of the spatial-temporal patterns of user move-

ments, i.e., the periodic mobility patterns, so as to character-

ize the long-term human mobility. For example, researchers

[9][10][11][28] have studied human periodic mobility pattern

by analyzing the daily and weekly movement of users. Sadilek

et al. [29] further predict human mobility in a longer term with

a scale of months or even years. Even though these techniques

can capture human mobility most of time, they fail to detect

users’ irregular movements, which is the focus of this paper.

In addition to location based services, the newly emerging

online event-based social networks (EBSN) provide a new

venue to analyze human mobility and social behaviors. Liu et

al. [12] investigated the network properties of EBSN such as

the degree distribution and community structures. Researchers

in [30] [31] have analyzed how offline human activities at

events affect the social networking behaviors. This paper

continues the research on EBSN and focuses on predicting

users’ irregular mobility by analyzing their past activities.

Even though our event attendance prediction utilizes some

similar techniques with the recommendation system [32][33]

(like finding the interest of a user by analyzing the user’s

past behaviors), we further consider the temporal and spatial

factors that may influence users’ decision on event attendance.

Moreover, learning the behavior of users on event attendance

can help to characterize users’ mobility in a more compre-

hensive way, which is helpful for the potential design of the

smartphone applications and networking strategies.

VI. CONCLUSIONS

In this paper, we proposed techniques to predict event atten-

dance by mining users’ past activities. We identified three sets

of features including semantic, temporal, and spatial features.

Semantic features characterize how frequently users attended

similar events in the past, and the semantic similarity between

events is used to identify similar events a user attended in

the past. Three supervised learning models are trained to

learn how the features affect event attendance. To evaluate

the performance of the proposed techniques, we collect a

dataset based on Meetup that contains semantic descriptions

of all events organized over a period of two years. Evaluation

results show that the supervised classifiers built by all features

outperform those built by individual features, and semantic

features are more effective than temporal features and spatial

features for predicting event attendance.
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